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Preface 

The statistical theory relevant to analyses of longitudinal clinical trial 
data is extensive, and applying that theory in practice can be challenging. 
Therefore, this book focuses on the most relevant and current theory, using 
practical and easy-to-implement approaches for bringing that theory into 
routine practice. Emphasis is placed on examples with realistic data, and 
the programming code to implement the analyses is provided, usually in 
both SAS and R. 

While this book focuses on analytic methods, analyses cannot be consid-
ered in isolation. Analyses must be considered as part of a holistic approach 
to study development and implementation. An industry working group 
recently proposed a study development process chart that begins with 
determining objectives, followed by choosing estimands, design, and analy-
ses and assessing sensitivity (Phillips et al. 2016). This book is oriented in 
accordance with that process. Early chapters focus on objectives, estimands, 
and design. Subsequent chapters go into detail regarding analyses and sen-
sitivity  analyses. The intent of this book is to help facilitate an integrated 
understanding of key concepts from across the study development process 
through an example-oriented approach. It is this holistic approach to analy-
sis planning and a focus on practical implementation that sets this text apart 
from existing texts.

Section I includes an introductory chapter along with chapters discussing 
estimands and key considerations in choosing them, study design consider-
ations, introduction of the example data sets, and a chapter on key aspects 
of mixed-effects model theory. Section II covers key concepts and consid-
erations applicable to modeling the observed data, including choice of the 
dependent variable, accounting for covariance between repeated measure-
ments, modeling mean trends over time, modeling covariates, model check-
ing and validation, and a chapter on modeling categorical data. Section III 
focuses on accounting for missing data, which is an inevitable problem in 
clinical trials. Section IV integrates key ideas from Sections I to III to illus-
trate a comprehensive approach to study development and analyses of real-
istic data sets. 

Throughout this book, example data sets are used to illustrate and explain 
key analyses and concepts. These data sets were constructed by selecting 
patients from actual clinical trial data sets and manipulating the observa-
tions in ways useful for illustration. By using small data sets, readers can 
more easily understand exactly what an analysis does and how it does it. For 
the comprehensive study development and analysis example in Section IV, 
two data sets contrived from actual clinical trial data are used to further 
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illustrate key points for implementing an overall analytic strategy that 
includes sensitivity analyses and model checking. 

Craig Mallinckrodt 
Eli Lilly Research Laboratories, Indianapolis, Indiana

Ilya Lipkovich
Quintiles, Durham, North Carolina
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Section I

Background and Setting

Section I begins with an introductory chapter covering the settings to be 
addressed in this book. Chapter 2 discusses trial objectives and defines 
and discusses estimands. Study design considerations are discussed in 
Chapter 3, focusing on methods to minimize missing data. Chapter 4 intro-
duces the data sets used in example analyses. Chapter 5 covers key aspects 
of mixed-effects model theory.

Some readers may at least initially skip Chapter 5 and refer back to it as 
needed when covering later chapters. Other readers may benefit from this 
review of mixed-effect models prior to moving to later chapters.
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1
Introduction

The evidence to support new medicines, devices, or other medical interven-
tions is based primarily on randomized clinical trials. Many of these trials 
involve assessments taken at the start of treatment (baseline), followed by 
assessments taken repeatedly during the treatment period. In some cases, 
such as cancer trials, the primary outcome is whether or not some important 
event occurred during the assessment intervals. These outcomes can be sum-
marized by the time to the event, or as a percentage of patients experiencing 
the event at or before some landmark time point. Alternatively, the multiple 
post-baseline assessments can all be used in a longitudinal, repeated mea-
sures framework, which can either focus on a landmark time point or con-
sider outcomes across time points. This book focuses on the longitudinal, 
repeated measures framework. 

With multiple post-baseline assessments per subject, linear mixed-effects 
models and generalized linear mixed-effect models provide useful ana-
lytic frameworks for continuous and categorical outcomes, respectively. 
Important modeling considerations within these frameworks include how 
to model the correlations between the measurements; how to model means 
over time; if, and if so, how to account for covariates; what endpoint to choose 
(actual value, change from baseline, or percent change from baseline); and 
how to specify and verify the assumptions in the chosen model. In addition, 
missing data is an incessant problem in longitudinal clinical trials. The fun-
damental problem caused by missing data is that the balance provided by 
randomization is lost if, as is usually the case, the subjects who discontinue 
differ in regards to the outcome of interest from those who complete the 
study. This imbalance can lead to bias in the comparisons between treatment 
groups (NRC 2010). 

Data modeling decisions should not be considered in isolation. These deci-
sions should be made as part of the overall study development process, because 
how to best analyze data depends on what the analysis is trying to accomplish 
and the circumstances in which the analysis is conducted. Therefore, study 
development decisions and data modeling decisions begin with considering 
the decisions to be made from the trial, which informs what objectives need 
to be addressed. Study objectives inform what needs to be estimated, which 
in turn informs the design, which in turn informs the analyses (Garrett et al. 
2015; Mallinckrodt et al. 2016; Phillips et al. 2016). 

The decisions made from a clinical trial vary by, among other things, stage 
of development. Phase II trials are typically used by drug development 
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decision makers to determine proof of concept or to choose doses for sub-
sequent studies. Phase III, confirmatory, studies typically serve a diverse 
audience and therefore must address diverse objectives (Leuchs et al. 2015). 
For example, regulators render decisions regarding whether or not the drug 
under study should be granted a marketing authorization. Drug develop-
ers and regulators must collaborate to develop labeling language that accu-
rately and clearly describe the risks and benefits of approved drugs. Payers 
must decide if/where a new drug belongs on its formulary list. Prescribers 
must decide for whom the new drug should be prescribed and must inform 
patients and care givers what to expect. Patients and care givers must decide 
if they want to take the drug that has been prescribed.

These diverse decisions necessitate diverse objectives and therefore diverse 
targets of estimation, and a variety of analyses. For example, fully understand-
ing a drug’s benefits requires understanding its effects when taken as directed 
(efficacy) and as actually taken (effectiveness) (Mallinckrodt et al. 2016). As will 
be discussed in detail in later chapters, different analyses are required for these 
different targets of estimation. 

It is important that the study development process be iterative so that con-
siderations from downstream aspects can help inform upstream decisions. 
For example, clearly defined objectives and estimands lead to clarity in what 
parameters are to be estimated, which leads to clarity about the merits of the 
various analytic alternatives. However, an understanding of the strengths 
and limitations of various analytic methods is needed to understand what 
trial design and trial conduct features are necessary to provide optimum 
data for the situation at hand. Moreover, for any one trial, with its diverse 
objectives and estimands, only one design can be chosen. This design may 
be well-suited to some of the estimands and analyses but less well-suited to 
others. 

Therefore, an integrated understanding of objectives, estimands, design, 
and analyses are required to develop, implement, and interpret results 
from a comprehensive analysis plan. The intent of this book is to help facili-
tate this integrated understanding among practicing statisticians via an 
 example-oriented approach.
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2
Objectives and Estimands—Determining 
What to Estimate

2.1 Introduction

Detailed discussion of estimands is relatively new to clinical trial literature, 
but very important. Estimands bridge the gap between study objectives 
and statistical methods (Phillips et al. 2016). The importance of estimands 
was highlighted in the National Research Council’s (NRC) expert panel 
report that was commissioned by the Food and Drug Administration (FDA) 
(NRC 2010). Although the report focused on the problem of missing data, 
their  recommendations set forth an overarching framework for the analysis 
of longitudinal clinical trial data. 

Until recently, many protocols had general objectives such as “To com-
pare the efficacy and safety of….” Such statements give little guidance to 
the designers of the studies and can lead to statistical analyses that do not 
address the intended question (Phillips et al. 2016). Estimands link study 
objectives and the analysis methods by more precisely defining what is to 
be estimated and how that quantity will be interpreted (Phillips et al. 2016). 
This provides clarity on what data needs to be collected and how that data 
should be analyzed and interpreted. 

Conceptually, an estimand is simply the true population quantity of inter-
est (NRC 2010); this is specific to a particular parameter, time point, and pop-
ulation (also sometimes referred to as the intervention effect). 

Phillips et al. (2016) used an example similar to the one below to illus-
trate the key considerations in defining the intervention effect component of 
estimands. Consider a randomized, two-arm (Drug A and Drug B) trial in 
patients with type 2 diabetes mellitus. The primary endpoint is mean change 
from baseline to Week 24 in HbA1c levels. Assessments are taken at baseline 
and at Weeks 4, 8, 12, 16, and 24. For ethical reasons, patients are switched 
to rescue medication if their HbA1c values are above a certain threshold. 
Regardless of rescue medication use, all patients are intended to be assessed 
for the 24-week study duration. 
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Table 2.1 outlines three of the estimands that can be defined for this trial. 
Each estimand is based on all randomized patients at the planned endpoint 
of the trial. However, as detailed in subsequent sections, each estimand 
implies different data to be included and potentially different analysis meth-
ods. Simply specifying the objective as assessing mean change from baseline 
to Week 24 does not distinguish between these three estimands. 

Although estimands are often discussed in the literature as part of dealing 
with missing data, the above considerations exist even if all the data intended 
to be collected were indeed observed. However, further complexity does arise 
from the missing data caused by patients failing to adhere to the protocol spec-
ified procedures. Patients may fail to adhere on an intermittent basis, being 
compliant with protocol procedures and having outcome assessments during 
some treatment intervals, but not all. Early discontinuation (dropout) from the 
trial and the missing data that can result from it is a more frequent and more 
troublesome problem. Missing data issues are covered in detail in Section III. 

With the diversity in medical research and the many clinical trial scenarios 
that exist, consensus on a universally best estimand is neither realistic nor desir-
able. Therefore, attention has turned to how to choose estimands (Mallinckrodt 
et al. 2016). Phillips et al. (2016) proposed a study development process chart 
similar to the one depicted in Figure 2.1. As the chart illustrates, choice of the 
primary estimand is informed by the decisions to be made from the trial and the 
objectives needed to inform these decisions. Although the general approach is 
to move from the top of the chart to the bottom, the arrows point in both direc-
tions. The study development process proceeds in an iterative manner so that 
interactions between the various components can be considered (Phillips et al. 
2016). Importantly, the chart makes clear that in order to determine how best 
to analyze clinical trial data, it is important to first consider the trial objectives 
and the estimands needed to be estimated in order to address those objectives.

Trial objectives are typically driven by the decisions to be made from the trial 
results (Mallinckrodt et al. 2016). In Chapter 1, it was noted that the decisions 
to be made from a trial depend in part on stage of development. Phase II trials 

TABLE 2.1 

Three Estimands of Interest in an Example Trial

Estimand Intervention Effect

1 Population-average effect regardless of what treatment was actually received; 
i.e., effect of treatment policy. Includes data after initiation of rescue treatment

2 Population-average effect attributable to the initially randomized medications; 
i.e., free from the confounding effects of rescue medication, and which 
accounts for reduction or loss of effect after discontinuation of the randomized 
treatment

3 Population-average effect if all patients remain on the initially randomized 
treatment throughout the study; i.e., effect if patients who switched to rescue 
would have remained on their randomized treatment
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typically inform drug development decisions. Phase III, confirmatory studies 
typically inform a diverse audience, including the sponsor, multiple regulatory 
agencies, dozens of disparate health technology assessment groups (payers), 
prescribers, patients, journal editors and reviewers, along with other research-
ers (Leuchs et al. 2015; Mallinckrodt et al. 2016). 

Specific estimands are as numerous and varied as the clinical trials sce-
narios in which they are applied. However, estimands can be grouped in 
several meaningful ways. For example, at the most conceptual level, esti-
mands can be divided into two general categories based on adherence to 
protocol-defined interventions: (1) Efficacy is the effects of the drug if taken 
as directed; that is, the effects if patients adhere to the protocol-defined inter-
ventions. (2) Effectiveness is the effects of the drug as actually taken; that 
is, the effects without regard to adherence to the protocol-defined interven-
tions (Mallinckrodt et al. 2012, 2014; Leuchs et al. 2015). However, the efficacy 
and effectiveness nomenclature does not make sense for safety outcomes. 
Therefore, a more general terminology is de jure (if taken as directed) and 
de facto (as actually taken) (Carpenter et al. 2013). The estimands introduced 
in Table 2.1 can be categorized according to this nomenclature. Again, each 
of these estimands involves the difference versus control in change to the 
planned endpoint of the trial, in all randomized patients.

• Estimand 1 is the change due to the treatments as actually taken, a de 
facto (effectiveness) estimand. The inference target is the treatment 
regimens; that is, Drug A plus rescue versus Drug B plus rescue. 

• Estimand 2 is the change due to the initially randomized treatments 
as actually taken, a de facto (effectiveness) estimand. The inference 

Decisions to be made from the trial

Objectives

Estimands

Design

Analysis

Sensitivity analysis

FIGURE 2.1
Study development process chart.
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target is the initially randomized treatments; that is, Drug A versus 
Drug B. 

• Estimand 3 is the change due to the initially randomized treatments 
if taken as directed, a de jure (efficacy) estimand. The inference tar-
get is the initially randomized treatments. 

It is important to differentiate estimand 3, which is based on all randomized 
patients, from a similar de jure estimand that is based on completers—that 
is, conditional on having been adherent. The completers estimand is lim-
ited for inference because it does not preserve the initial randomization. In 
contrast, estimand 3 includes all randomized patients. Therefore, inferences 
and parameter estimates apply to all patients in the population, not merely 
to those who were doing well enough to remain adherent, as is the case for 
compeleters analyses. 

2.2 Fundamental Considerations in Choosing Estimands

Given the diversity in clinical settings and decisions to be made from clini-
cal trial data, no universally best primary estimand exists, and therefore 
multiple estimands are likely to be of interest for any one trial (Mallinckrodt 
et al. 2012, 2014, 2016; Garrett et al. 2015; Leuchs et al. 2015; Phillips et al. 
2016). 

Each of the three estimands defined in Section 2.1 have strengths and 
limitations. Estimand 3, the de jure estimand, can be considered hypotheti-
cal (i.e., counterfactual) for groups of patients because treatment effects are 
assessed as if taken as directed when in any meaningfully sized group some 
patients will not adhere (NRC 2010). Therefore, de jure estimands assess 
what is possible to achieve in a group of patients, not what actually was 
achieved. However, de jure estimands assess what to expect if patients are 
adherent—and in most clinical settings the majority of patients are adher-
ent (Mallinckrodt et al. 2014). In addition, patients are advised to take their 
medication as directed; therefore, it is important to assess what would hap-
pen if a medication were taken as directed so that optimal directions can be 
developed (Mallinckrodt et al. 2016).

De facto estimands can be considered counterfactual for individual patients 
because treatment effects are assessed from a mix of adherent and nonad-
herent patients, but each patient is either adherent or not adherent, no patient 
is both. On the other hand, de facto estimands can provide useful estimates 
of what to expect from the group as a whole (CHMP 2010; NRC 2010). 

Most of the discussion on de jure and de facto estimands has been in 
the context of assessing drug benefit. However, estimands for assessing 
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drug risk are also important. Consider a drug that has the adverse effect 
of increasing blood pressure. Some patients may become hypertensive and 
discontinue study medication and/or take medication to treat the high 
blood pressure, with subsequent return to normal blood pressure. De facto 
estimands would reflect the patients’ return to normal, thereby suggesting 
no change at the planned endpoint of the trial. De jure estimands would 
not reflect a return to normal and would reflect increases at endpoint 
because had the patients been adherent they would likely have continued 
to be hypertensive (Mallinckrodt et al. 2016). 

2.3 Design Considerations in Choosing Estimands

2.3.1 Missing Data Considerations

Universal agreement exists that clinical trials should aim to minimize miss-
ing data, thereby maximizing the portion of the intended data that was actu-
ally collected. The intent is to maximize adherence to the initially assigned 
treatments in order to minimize reliance of inferences on untestable assump-
tions about the missing data (Verbeke and Molenberghs 2000; Molenberghs 
and Kenward 2007; CHMP 2010; NRC 2010; Mallinckrodt 2013; Ratitch and 
O’Kelly 2014). These considerations have often been in the context of de jure 
estimands. However, the impact of maximizing retention on de facto esti-
mands is also important (Leuchs et al. 2015; Mallinckrodt et al. 2016).

Increasing adherence is likely to increase benefit from the drug as actually 
taken, thereby resulting in more favorable outcomes for de facto estimands. 
If the measures used to engender adherence in the clinical trial are not fea-
sible in clinical practice the trial could yield biased estimates of effectiveness 
relative to the conditions under which the drug would be used. 

Specifically, assessment of de facto estimands often entail using adherence 
as part of the primary outcome. For example, patients that discontinue study 
drug can be considered a treatment failure regardless of the observed out-
comes. Therefore, it is important to consider the degree to which treatment 
adherence decisions in the clinical trial match adherence decisions in clinical 
practice. These generalizability considerations may be especially important 
in trials with placebo and/or blinding because these factors are never pres-
ent in clinical practice (Mallinckrodt 2013; Mallinckrodt et al. 2016). 

2.3.2 Rescue Medication Considerations 

Whether or not data should be collected after discontinuation of initially ran-
domized study medication or initiation or rescue medication, and whether that 
data should be included in an analysis are critically important considerations. 
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Use of rescue medications for patients not adequately responding to the 
initially randomized medications has been suggested because this provides 
an assessment of pragmatic effectiveness and can reduce dropout (NRC 
2010; Fleming 2011; Permutt 2015a). The need for rescue therapy is also partly 
motivated by arguments for ethical patient care, especially in placebo-
controlled trials. However, rescue medications can mask or exaggerate the 
efficacy and safety effects of the initially assigned treatments, thereby bias-
ing estimates of the effects of the originally assigned medication (Buncher 
and Tsay 2005; Holubkov et al. 2009; Henning 2011; Mallinckrodt et al. 2012, 
2014; Leuchs et  al. 2015). In placebo-controlled trials, if rescue therapy is 
beneficial and post-rescue data are included in the analysis, the treatment 
effect is likely to be substantially diminished compared to the effect if post-
rescue data are not included (Mallinckrodt et al. 2016). 

Another consideration is that readily available rescue medications may 
reduce study discontinuation, but could increase discontinuation from the 
initially randomized medication, which would of course be counter to the pri-
mary goal of maximizing retention on the initial medications (Mallinckrodt 
2013). This issue may be particularly important in placebo-controlled trials 
where patients are aware that they may be randomized to an ineffective 
treatment but switching to rescue guarantees use of an effective treatment 
(Mallinckrodt et al. 2016). 

With estimand 1 (de facto, treatment regimens), data after discontinuation 
of the initially randomized medication and/or addition of rescue medication 
are included in the analyses. The study protocol should specify the rescue 
treatment(s) and how they are administered, or specify that rescue treatment 
is at the discretion of the investigator. The protocol should also specify if 
rescue treatment is provided by the sponsor or if marketed product is to be 
used. 

As noted above, estimand 1 is with regard to treatment policies or regi-
mens (NRC 2010; Mallinckrodt et al. 2012; Leuchs et al. 2015). Estimand 1 
is often seen as an assessment of pragmatic effectiveness (Permutt 2015a). 
As with estimand 2, generalizability must be considered. For estimand 1, 
a design comparing an experimental drug plus rescue versus a standard 
of care plus rescue may be appropriate. However, designs with placebo 
control (e.g., experimental drug plus rescue versus placebo plus rescue) 
may be less appropriate in some settings. Decisions regarding adherence 
and need for rescue in double-blind, placebo-controlled settings may not 
be as applicable to general clinical practice as the decisions made when 
all patients receive active medication. Simply put, placebo is never used 
in general clinical settings; therefore, when assessing pragmatic effec-
tiveness, placebo control may not be ideal (Mallinckrodt et al. 2016). 
Moreover, the most relevant questions in early research and initial regula-
tory reviews, especially for placebo-controlled trials, are often about the 
effects of the investigational drugs, not treatment policies (Mallinckrodt 
et al. 2012; Mallinckrodt 2013). 
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The ICH E9 guidance is often cited when justifying choice of a primary 
analytic approach (http://www.ich.org/fileadmin/Public_Web_Site/ICH_
Products/Guidelines/Efficacy/E9/Step4/E9_Guideline.pdf). This guidance 
emphasizes the ITT principle, which is defined as “the principle that asserts 
that the effect of a treatment policy can be best assessed by evaluating on the 
basis of the intention to treat a subject (i.e., the planned treatment regimen) 
rather than the actual treatment given. It has the consequence that subjects 
allocated to a treatment group should be followed up, assessed and analyzed 
as members of that group irrespective of their compliance to the planned 
course of treatment.”

Thus, ITT has two parts, the patients to include and the data for each patient 
to include (Permutt 2015a; Mallinckrodt et al. 2016). Some deviations from 
one or both aspects of the intent-to-treat principles are routinely accepted 
(Permutt 2015a). The guidance is clear on the need to include all random-
ized patients and that all data should be included, but it does not specifically 
address data after initiation of rescue treatment. 

Rescue therapy is specifically addressed in ICH E10, Section 2.1.5.2.2 (http://
www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/
Efficacy/E10/Step4/E10_Guideline.pdf). In referring to trials with rescue, 
E10 states: “In such cases, the need to change treatment becomes a study 
endpoint.” Thus, according to E10, post-rescue data need not be included in 
the primary analysis. 

It is important to recognize that the ICH guidance was developed before 
the NRC report (NRC 2010) that focused on the need for clarity on esti-
mands. The E9 guidance refers to ITT as the best way to assess treatment 
policies/regimens. It does not address inference for the initially randomized 
medications. Considerations of estimands today are often more nuanced 
than anticipated by the 1998 ICH guidance. An addendum to the E9 guid-
ance specific to choices of estimands is anticipated in 2016 or soon thereafter.

A reasonable approach is to maintain the principles of ITT, but employ a 
slight modification to address the need for greater specificity (Mallinckrodt 
et al. 2016). In this modified approach to ITT, all randomized patients are 
again included, thereby maintaining consistency with the first tenant of ITT. 
The second tenant of ITT is modified to mean that all data—relevant to the 
estimand—are included. For example, when evaluating estimand 2 (de facto, 
initially randomized treatments) and estimand 3 (de jure, initially random-
ized treatments), post-rescue data are not relevant and are therefore not 
included in the analysis, thereby avoiding the confounding effects of rescue 
medication. 

O’Neill and Temple (2012) noted that estimand 1 may be a more common 
choice for the primary estimand in outcomes trials where the presence/absence 
of a major health event is the endpoint and/or the intervention is intended 
to modify the disease process. Symptomatic trials (symptom severity is the 
 endpoint) often use a primary estimand where the inferential target is the ini-
tially randomized treatments. In these scenarios the confounding from rescue 
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medications is avoided by excluding data after discontinuation of study medi-
cation/initiation of rescue from the primary analysis. 

2.4 Analysis Considerations

To understand the analytic implications in choice of estimand, first consider 
estimand 3, the de jure effects of the initially randomized medication. The 
intent of estimand 3 is to assess drug effects if all randomized patients were 
adherent, even though in any realistically sized trial there will be some 
patients who do not adhere. Although failure to adhere can be manifest in 
many ways, the most common scenario is that of missing data. Patients may 
discontinue the study and all study-related procedures prior to the planned 
time of the primary assessment. Patients may also discontinue the random-
ized study medication but remain in the study for follow-up assessments. 

For estimand 3, data after discontinuation of the initially randomized study 
medication are not needed. That is, post-rescue/post-discontinuation data are 
not included, thereby avoiding the potentially confounding effects of rescue 
medication. However, some data intended to be collected are not available. 
Moreover, the reason(s) data are not available are usually related to outcome. 
That is, patients with poor outcomes are more likely to be missing than patients 
with good outcomes. This selection process means that the observed data are 
not a random sample of the data intended to be collected. Therefore, analysis of 
estimand 3 requires estimates of what would have happened if all patients were 
adherent, but this cannot be based on only those patients who were adherent. 

Common analytic approaches for estimand 3 involve the assumption that 
data are missing at random (MAR). This assumption and other missing data 
considerations are covered in detail in Section III. Missing at random essen-
tially means that conditional on the observed data, the statistical behavior 
(means, variances, etc.) of the unobserved data is the same as the observed 
data. Put another way, the unobserved data can be predicted in an unbi-
ased manner from the observed data. Analytic approaches valid under MAR 
include likelihood-based analyses, multiple imputation of missing values 
followed by an analysis that would have been appropriate had the data been 
complete, and weighted generalized estimating equations. These analyses 
are covered in detail in Section III. 

Given the reliance of these methods on assumptions about the missing 
data, which of course cannot be verified since the data are missing, sensi-
tivity analyses are required to assess the degree to which inferences are 
dependent on the assumptions (Verbeke and Molenberghs 2000; NRC 2010; 
Mallinckrodt 2013).

Estimand 1 can be evaluated using analyses similar to estimand 3, with the 
exception that estimand 1 requires including post-rescue data (Permutt 2015a). 
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This has several important implications. First, the confounding effects of the 
rescue medication necessitate that inference is on the treatment regimens, not 
the individual treatments to which patients were randomized. In addition, 
including the post-rescue data means less data will be missing compared with 
that same scenario when not including post-rescue data. 

Approaches to assessing estimand 2 often entail ascribing unfavorable 
outcomes to patients who discontinue the initially randomized medica-
tion or who need rescue medication, regardless of what outcomes were 
actually observed while the patients were adherent (Carpenter et al. 2013; 
Mallinckrodt 2013; Permutt 2015a). This approach has the compelling benefit 
of resulting in no missing data. And for symptomatic treatments that do not 
change the underlying disease process, it is intuitively sensible to assume 
that if patients can not adhere to a drug they will not benefit from it in the 
long run (O’Neill and Temple 2012). 

However, the generalizability considerations noted in the section on design 
considerations are particularly important. Fully satisfactory assessments of 
effectiveness from clinical trials may be problematic (NRC 2010). Adherence 
decisions in the clinical trial setting must sufficiently match the decisions 
in clinical practice for the estimand to be useful. Placebo control and blind-
ing in a clinical trial may result in adherence decisions different from what 
would be seen in clinical practice (Mallinckrodt et al. 2016).

Another consideration is exactly what value(s) to impute as unfavorable 
outcomes for nonadherent patients. Such imputations for continuous end-
points have historically been done using baseline observation carried for-
ward (BOCF). However, single imputation approaches such as BOCF have a 
number of disadvantages that are discussed in Chapters 12 and 13, and more 
principled approaches are gaining favor (Kenward and Molenberghs 2009; 
Carpenter et al. 2013; Mallinckrodt 2013; Mallinckrodt et al. 2014). 

Multiple imputation-based approaches to estimate parameters for and test 
hypotheses about de facto estimands have come into the literature recently. 
These methods have been referred to as controlled imputation or more spe-
cifically reference-based controlled imputation. See Chapter 18 for detailed 
descriptions of these approaches. However, the general approach is to use 
multiple imputation in a manner that accounts for the change in/discontinu-
ation of treatment. In so doing, patients that discontinue from an experimen-
tal arm have values imputed as if they were in the reference (e.g., placebo 
arm). Depending on the exact implementation, imputed values can either 
reflect no pharmacologic benefit from the drug immediately upon discontin-
uation/rescue, a decaying benefit after discontinuation/rescue, or a constant 
benefit after discontinuation/rescue (Carpenter et al. 2013; Mallinckrodt 
et al. 2014). 

For categorical endpoints, nonresponder imputation (NRI) has often been 
used, wherein all patients that discontinue initially randomized medication 
and/or initiate rescue medication are considered nonresponders, regard-
less of the observed outcome. The term NRI is somewhat of a misnomer. 
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The name implies explicit imputation of repeated (binary) measurements. 
In this context, NRI would have the same disadvantages as BOCF. However, 
NRI as commonly used does not involve imputation of repeated measures. 
Rather, there is a single endpoint per patient, reflecting treatment success or 
failure. Patients that remain adherent to the protocol-specified intervention 
and achieve the predefined level of response are considered a treatment suc-
cess (responder) and patients that either fail to achieve the needed level of 
response or who deviate from the protocol-specified intervention are consid-
ered treatment failures.

As with continuous endpoints, the advantage of the treatment success/fail-
ure approach is that it yields complete data; and, the important caveat is that 
adherence decisions in the trial must be similar to the decisions that would 
be made in clinical practice if results are to be generalizable.

2.5 Multiple Estimands in the Same Study

The multifaceted nature of clinical trials is important to appreciate when 
considering estimands (Leuchs et al. 2015; Mallinckrodt et al. 2016). Within 
a trial, diverse objectives are often needed to inform the decisions of the 
diverse stakeholders (multiple regulatory agencies, dozens of health tech-
nology assessors/payers, prescribers, patients, caregivers, sponsors, other 
researchers, etc.). Even for a single stakeholder in a single trial it is often 
important to know what happens when a drug is taken as directed (de jure 
estimand) and to know what happens when the drug is taken as in actual 
practice (de facto estimand). Therefore, no single estimand is likely to best 
serve the interests of all stakeholders and de jure and de facto estimands will 
both be of interest (Mallinckrodt et al. 2012; Leuchs et al. 2015; Mallinckrodt 
et al. 2016).

The following example first described in Mallinckrodt et al. (2012) illus-
trates the benefits of assessing both de jure and de facto estimands in the 
same trial. Drug A and Drug B (or Dose A and Dose B of a drug) have equal 
effectiveness, but drug A has superior efficacy and Drug B has greater adher-
ence. Even if effectiveness is the primary estimand, de jure estimands are 
needed to understand the differences in clinical profiles. 

Dose/Drug A might be the best choice for patients with more severe ill-
ness because it has greater efficacy. Dose/Drug B might be best for patients 
with less severe illness and/or safety and tolerability concerns because it has 
greater adherence resulting from fewer side effects. A more nuanced under-
standing of efficacy and adherence could lead to additional investigation that 
could lead to more optimized patient outcomes. For example, subgroups of 
patients who especially benefit from or tolerate the high dose might be iden-
tified from the existing data or from a new trial (nonresponders to low dose). 



15Objectives and Estimands—Determining What to Estimate

Or, alternate dosing regimens that might improve the safety/tolerability of 
the high dose, such as titration, flexible, or split dosing (40 mg every 2 weeks 
rather than 80 mg every 4 weeks), could be investigated in subsequent trials 
(Mallinckrodt et al. 2016). 

One approach to evaluating multiple estimands in the same study is to 
have some outcomes geared toward assessing a certain estimand(s) while 
other outcomes address other estimand(s). However, study designs and the 
data generated from them are often such that multiple estimands can be 
evaluated from the same outcome measure. 

For example, estimand 1 could be assessed by including post-rescue data 
in the analysis in order to provide an evaluation of pragmatic effectiveness. 
Estimand 2 could be evaluated in the same trial by not including post-rescue 
data and defining discontinuation of the initial study medication or the need 
for rescue medication as treatment failure. Estimand 3 could also be evalu-
ated from the same trial by not including post-rescue data and applying an 
appropriate analysis. 

The ability to assess multiple estimands from the same outcome variable 
reinforces the need for clarity as to which estimand is addressed by each 
analysis. This in turn highlights the need for clarity on the assumptions, 
strengths, and limitations of analyses, which can vary from one estimand 
to another. 

Even though multiple estimands can be assessed from the same outcome, 
the internal validity and external generalizability of those results will vary. 
Some designs are better suited to certain estimands than others. Therefore, 
choice of the primary estimand has a particularly important influence on 
choice of design. 

2.6 Choosing the Primary Estimand

Historical precedent, especially for trials submitted to regulatory authorities 
in support of marketing authorizations, can influence choice of the primary 
estimand. However, fundamental understanding of key considerations 
should be the primary driver in choice of primary estimands. 

In the iterative study development process outlined in Section 2.1, design 
and analysis considerations can influence objectives and estimands. For 
example, consider a short-term, acute phase clinical trial where extensive 
efforts to maximize adherence are expected to yield 95% of patients remain-
ing on the initially assigned study medication. Given this highly controlled 
setting and strong adherence, a de jure primary estimand may be most 
relevant. However, in a long-term trial in an otherwise similar setting, the 
design may need to be more similar to clinical practice, with open-label treat-
ment, rescue therapy, etc., in order to enroll patients willing to participate in 



16 Analyzing Longitudinal Clinical Trial Data

a long-term study. The more pragmatic intent and design of the long-term 
study, along with the inevitable loss of adherence over time, are more con-
sistent with a de facto primary estimand than a de jure primary estimand 
(Mallinckrodt et al. 2016). 

Mallinckrodt et al. (2016) detailed another example of how other factors 
can influence choice of primary estimand. Consider a trial where focus is 
on effectiveness, but interest is in both estimand 1 and estimand 2; that is, 
results with and without post-rescue data are relevant. Also consider that 
in this scenario it is important to keep the sample size as small as possible 
either because patients are hard to recruit, or for ethical reasons it is impor-
tant to limit exposure to placebo. Use of estimand 2 as the primary estimand 
is likely to result in greater power, which translates into smaller sample sizes 
and reduced exposure to placebo. If estimand 2 was chosen as the primary 
estimand, estimand 1 with post-rescue data may still be collected and used 
secondarily. 

2.7 Summary

An iterative process should be used to choose estimands, beginning with the 
objectives required to address the needs of diverse stakeholders. No single 
estimand is likely to meet the needs of all stakeholders. De jure (efficacy) and 
de facto (effectiveness) estimands each have strengths and limitations, and 
fully understanding a drug’s effects requires understanding results from 
both families of estimands. 

Whether or not data after initiation of rescue medication should be 
included in the primary analysis depends on the estimand to be tested and 
the clinical setting. Including versus not including post-rescue data can have 
an important impact on results, and therefore sample size implications and 
total exposure to placebo must be carefully considered.

There are many important nuances to understand about various analyses 
as they are applied to different estimands. These nuances are the focus of 
Sections II, III, and IV. However, one factor is common to all analyses for 
all estimands: the analysis must either entail modeling assumptions about 
missing data or use the fact that data are missing to ascribe an outcome. 
Therefore, minimizing missing data reduces sensitivity to missing data 
assumptions for de jure estimands, but it is also important to consider gener-
alizability of results for de facto estimands if efforts to maximize adherence 
in the trial are not feasible in clinical practice. The next chapter discusses 
trial design and conduct for limiting missing data.
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3
Study Design—Collecting the Intended Data

3.1 Introduction

The trial design element of the study development process depicted in 
Figure 2.1 can be parsed into two distinct components: (1) determining what 
data is to be collected and (2) ensuring the intended data is collected. The 
intent of this chapter is not to provide a broad discussion of both components. 
This chapter addresses the second component of ensuring that the intended 
data is collected. The focus is on practical aspects of preventing missing data, 
which is important regardless of the specific design— regardless of what 
data was intended to be collected. For general texts on clinical trial design, 
see Piantadosi (2005). 

The consequences of even moderate amounts of missing data can be note-
worthy and the impact of higher rates of missing data can be profound 
(Mallinckrodt 2013). Therefore, maximizing the number of participants who 
are maintained on the protocol-specified interventions until the outcome 
data are collected is the single most important thing that can be done to miti-
gate the impact of missing data (NRC 2010). That is, the best way to handle 
missing data is to prevent it.

Studies with more missing data than expected are suspect for poor conduct 
in general (LaVange and Permutt 2015). These authors noted that from a regu-
latory perspective, aberrantly high rates of missing data raise questions about 
what else may have gone awry. If a surprising number of patients miss their 
scheduled visits, then other aspects of patient compliance or study conduct in 
general may be questioned. Similarly, if a surprising number of patients are lost 
to follow-up with little attempt at finding out why or encouraging those still 
willing to participate to reconsider a decision to drop out, the study objectives 
may not have been adequately explained to the patients at the time of their con-
sent, or the enrollment criteria may have been applied inconsistently, with some 
patients enrolled that should not have been and vice versa. A key component 
of study planning is to anticipate the eventualities of missed visits and attrition 
during the treatment and follow-up periods (LaVange and Permutt 2015).

However, minimizing missing data is not easy. Strategies for maximizing 
retention are difficult to study directly and what evidence there is comes 
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from between study comparisons that are subject to confounding factors 
that can mask or exaggerate differences in retention due to a design feature 
or trial conduct strategy (Mallinckrodt 2013). 

Mindful of these limitations, recent guidance on preventing and treating 
missing data (NRC 2010; Hughes et al. 2012; LaVange and Permutt 2015) pro-
vided a number of suggestions on ways to minimize missing data. An over-
view of these suggestions is provided in the following sections. Additional 
details on these approaches can be found elsewhere (Mallinckrodt 2013).

3.2 Trial Design 

Some of the trial design options to limit missing data considered by the NRC 
expert panel (NRC 2010) include: 

• Run-in periods and enrichment designs
• Randomized withdrawal studies
• Choice of target population
• Titration and flexible dosing
• Add-on studies
• Shorter follow-up
• Rescue medications
• Definition of ascertainable outcomes

One of the complicating aspects of lowering rates of missing data is that 
design options to maximize retention often entail trade-offs. A design fea-
ture that reduces the probability of dropout is likely to have consequences 
in other aspects of the trial. Understanding and managing the trade-offs is 
key to picking appropriate options for a particular scenario. The following 
discussion focuses on general aspects of these trade-offs. Given the idiosyn-
cratic nature of missing data and its impacts, it is important to assess the 
pros and cons of the various options in the specific situation at hand. 

Treatments typically do not work equally well in all patients. If there is a 
systematic trend for some groups of patients to have better outcomes, this 
knowledge can be used to reduce dropout by testing the treatment in the 
subpopulation with the most favorable outcome or greatest likelihood of 
adherence/compliance. 

Selecting participants prior to randomization that are thought to have more 
favorable responses or other attributes is termed “enrichment” (NRC 2010). 
Run-in designs have an initial (run-in) period in which a subset of patients 
is selected based on initial response. The key difference between run-in and 
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enrichment designs is that the active treatment is used to  identify the subset 
of participants in a run-in design whereas prior knowledge is used in enrich-
ment designs (NRC 2010). The trade-off with enrichment and run-in designs 
is that inference is restricted to the subset of patients meeting randomiza-
tion criteria. Inferences do not apply to the general population because the 
patients available for randomization are expected to have more favorable 
responses than the population as a whole. For additional information on and 
descriptions of run-in periods and enrichment designs, see Fedorov and Liu 
(2007) and Temple (2005). 

A randomized withdrawal design is a specific form of run-in design, typi-
cally having a longer run-in phase because the goal is to identify patients 
that sustain an adequate efficacy response and to then test whether or not 
continued treatment is needed. However, many of the same design consid-
erations and trade-offs apply to both randomized withdrawal and run-in 
designs (Mallinckrodt 2013).

Protocols that allow flexible dosing to accommodate individual differences 
in response may reduce the frequency of dropout due of adverse events or 
inadequate efficacy (NRC 2010). Dose titration is when patients initially take 
a drug at a dose lower than the target or posited optimal dose in order to 
reduce adverse events and improve initial tolerability, which can reduce drop-
out. Flexible dosing may include dose titration, but also allows subsequent 
dosing adjustments. The basic idea is to set a target dose that patients may 
titrate to or begin initially. Dose increases above the target dose are allowed 
for patients with inadequate initial response, and decreases below the target 
dose are allowed if safety or tolerability concerns emerge (Mallinckrodt 2013). 

In titration and flexible dose trials, inference is on the dosing regimen(s), 
not on specific doses. Hence, flexible dosing is most applicable to those situa-
tions in which inferences on dose response or specific doses are not required. 
However, flexible dosing may more accurately reflect actual clinical practice 
in many scenarios (Mallinckrodt 2013).

Add-on studies include designs for which in addition to receiving a stan-
dard of care, patients are randomized to an experimental drug versus con-
trol (usually placebo). Add-on designs may reduce dropout due to lack of 
efficacy and in many instances may reflect actual clinical practice (NRC 
2010). However, inference is on the dosing regimen, not on the experimental 
drug as mono-therapy. In addition, add-on designs generally target a subset 
of the population with inadequate response to the standard of care because 
patients doing well on the background treatment are not good candidates to 
assess the benefits of the experimental drug (NRC 2010). 

Shorter follow-up periods may lead to lower dropout rates compared with 
longer follow-up periods, because patients have less opportunity to experi-
ence those events that lead to dropout. In addition, shorter follow-up reduces 
the overall burden on patients because the number of clinical visits may be 
reduced, thereby fostering greater compliance with the planned assessments 
(Mallinckrodt 2013). 
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However, shorter follow-up may not be feasible because trials of specific 
duration are often required. In addition, shorter follow-up periods may 
be less efficient in those instances where the treatment benefits increase 
over time and are therefore larger as the duration of assessment increases 
(Mallinckrodt 2013). Use of shorter follow-up is essentially trading off par-
ticipants who respond more slowly to study treatment with participants who 
drop out early. Past experience from similar trials can guide evaluation of 
this trade-off (NRC 2010). A potential compromise is to have the primary 
assessment based on shorter follow-up, but patients continue in the trial and 
assessments at subsequent times are secondary (NRC 2010). 

Use of rescue medication was cited by the NRC expert panel (NRC 2010) 
as a potential means to reduce missing data. However, this approach has 
important implications for what estimands can be evaluated. For a complete 
discussion on the considerations for use of rescue medications, see Chapter 2. 
Importantly, if rescue medication is provided as part of the protocol, care 
must be taken so that availability of rescue medication does not increase dis-
continuation of randomized study medication (Mallinckrodt et al. 2016).

Another highlighted recommendation from the NRC guidance (NRC 2010), 
closely linked to use of rescue medications, was collecting follow-up data. 
Specifically, the panel recommended that: “Trial sponsors should continue to 
collect information on key outcomes on participants who discontinue their 
protocol-specified intervention in the course of the study, except in those 
cases for which compelling cost-benefit analysis argues otherwise, and this 
information should be recorded and used in the analysis.”

The NRC guidance goes on to state that benefits of collecting follow-up 
data include being able to assess the impact of subsequent treatments on 
outcomes, to assess adverse events after discontinuation of the trial, and to 
help verify assumptions made about what outcomes would have been had 
treatment continued. If the primary estimand is to test treatment regimens 
that include the experimental medication and rescue medication, follow-up 
data is part of the primary estimand.

Given the idiosyncratic nature of missing data and its consequences, it is 
important to consider the specific circumstances of a trial. Following patients 
to monitor resolution of adverse effects is clearly necessary for ethical and 
scientific reasons, and is already done routinely. Sponsors should consider 
whether patients who discontinue due to adverse effects should be given a 
full assessment battery, only safety assessments, or some reduced assessment 
battery including safety and some efficacy outcomes (Mallinckrodt 2013). For 
assessing the effects of rescue treatments on outcomes, the follow-up data 
will often be of an observational nature—not arising from randomized com-
parisons. Therefore, constructing meaningful statistical comparisons may 
not be straightforward (Mallinckrodt 2013). 

It is important to recognize that collecting follow-up data does not reduce 
the amount of missing data for some estimands. Therefore, collecting follow-
up data should not be seen as a substitute for the most important objective of 
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retaining as many patients as possible on the initially randomized medications 
(Mallinckrodt 2013). 

Primary outcome measures that require invasive procedures (e.g., liver 
biopsies, endoscopies) are likely to result in significant missing data, and 
such outcome measures should be avoided whenever possible (NRC 2010). 
Missing data can also arise from the use of outcomes that are undefined 
for some patients. Therefore, primary outcomes that are ascertainable for all 
randomized participants should be used (NRC 2010). 

One approach that may be useful in a variety of settings is to define a 
composite outcome that includes adherence as part of the outcome; for 
example, outcomes that incorporate death, or study drug discontinuation or 
the need for rescue medication as part of the outcome (NRC 2010; LaVange 
and Permutt 2015). The composite outcome may have as one component an 
ordinal or continuous outcome. The death and adherence components of the 
composite can be incorporated by ranking a continuous outcome score in a 
manner that assigns bad outcomes to applicable patients, regardless of the 
outcomes that were observed (LaVange and Permutt 2015). 

Another common approach is to dichotomize the continuous outcome 
based on criteria for a clinically meaningful response. Patients that meet 
the response criteria and are adherent to study medication are considered a 
treatment success. Patients that did not meet response criteria, or who dis-
continue study medication, are considered treatment failures (LaVange and 
Permutt 2015). 

These approaches are appealing in that they result in no missing data. 
However, composite outcomes should not be used to avoid the missing data 
if it compromises the clinical relevance of the outcome (Fleming 2011). 

As detailed in Chapter 2, when including adherence as part of an outcome, 
it is important that the generalizability of the results is justified. For example, 
in a double-blind and placebo-controlled study, the decisions patients and 
doctors make about adhering to randomized medication may not reflect the 
effectiveness of the medication that will be seen in actual clinical practice. 
Hence, the estimator may be a biased estimate of the intended effectiveness 
estimand. 

3.3 Trial Conduct 

Trial conduct approaches to limit missing data include:

• Limiting trial burden on participants
• Providing incentives to patients and investigative sites for trial 

completion 
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• Train and educate sites and patients on the importance of complete data
• Monitoring and reporting completion rates during the trial
• Do not discontinue non-compliant patients

Trials should limit participants’ burden and inconvenience in data collec-
tion. However, collecting less data means getting less information. Therefore 
study teams need to balance the conflicting goals of getting the most infor-
mation possible from a trial and reducing patient burden in order to increase 
retention (NRC 2010). 

Some ways to reduce patient burden include: (1) minimize the number 
of visits and assessments; (2) avoid redundant data collection and collect 
the minimum amount of information needed to address study objectives; 
(3) gather data efficiently using user-friendly case report forms and direct 
data capture (that does not require a clinic visit) whenever feasible; and, 
(4) allow sufficiently large time windows for assessments (NRC 2010; 
Mallinckrodt 2013).

Clinic visits can be made less burdensome by making the overall expe-
rience more pleasant via a welcoming environment, friendly staff that 
respects participant’s time, provisions for transportation and availability 
of on-site diversions for children and/or provisions for child care. Sending 
visit reminders, as is routinely done in clinical practice, can also help avoid 
missed visits (NRC 2010).

Retention may also be increased by providing incentives for completing 
treatment. Some possible incentives include providing effective treatments 
or extension phases to participants that complete the trial (NRC 2010).

Other trial conduct features to consider include basing site/investigator 
selection on rates of complete data while patients are in the trial and in rates 
of patients who complete the trial (NRC 2010). Training provided to sites 
and patients on the study procedures should emphasize the importance of 
complete data. In those instances when follow-up data are collected, also 
emphasize the difference between discontinuing the study treatment and 
discontinuing data collection (NRC 2010). 

Data completeness can be improved by monitoring and reporting it dur-
ing the course of the trial. The NRC guidance (NRC 2010) suggested that 
the information from these assessments be available at investigator meet-
ings and on study websites in order to create a climate that encourages study 
completion. Monitoring can also identify poorly performing sites and the 
need for remediation or site closure (Mallinckrodt 2013).

Patient education should include how their data is important to overall 
scientific knowledge. This information could be included in a patient video 
that also covers key study procedures. Participant engagement and reten-
tion can be enhanced through newsletters, regularly updated websites, 
study-branded gifts, regular expressions of thanks, and solicitation of input 
regarding relevant issues of study conduct (NRC 2010; Mallinckrodt 2013).
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Investigator payments can be structured to reward completions. The 
NRC guidance (NRC 2010) notes that it is acceptable and generally advis-
able to link a final payment to completion of forms at a study closeout visit. 
However, the guidance goes on to caution that it is unethical for patients to 
continue a study if it exposes them to undue risk. But if there are minimal 
risks to the participant associated with data collection, it may be acceptable 
to provide financial incentives to continue to collect data, whether or not the 
participant continues treatment.

The NRC guidance (NRC 2010) also summarized what investigators and 
site  personnel can do to reduce the amount of missing data. Suggestions 
included emphasizing the importance of completion (and follow-up data, 
if relevant) during informed consent and informed withdrawal of consent, 
and providing appropriate incentives for participants. The Code of Federal 
Regulations requires that study participant compensation is neither coercive 
nor at the level that would present undue influence (21CFR 50.20). Most insti-
tutional review boards allow cash payments that are slightly back-loaded, 
retaining a small proportion as an incentive for completion (NRC 2010).

Often, trial sponsors discontinue patients who are not compliant, justify-
ing this practice on grounds that non-compliant patients are not useful in 
evaluating the effects of the drug (LaVange and Permutt 2015). However, this 
can unnecessarily increase the amount of missing data. Alternatively, a vari-
able can be created in the database to note compliance status. Data can be 
analyzed for all patients and for compliant patients only. Whatever the rea-
son for the protocol violation, if the patient’s safety is not at risk, then encour-
aging discontinuation should not be necessary (LaVange and Permutt 2015)

Again, the most important aspect is to prevent missing data. Replacing 
language encouraging discontinuation of protocol violators with strategies 
for encouraging compliance and minimizing attrition would go a long way 
to improving study conduct and optimizing data analysis (LaVange and 
Permutt 2015).

3.4 Summary

Objective evidence on how trial design and trial conduct alternatives influ-
ence rates of missing data is scarce. Nevertheless, recent literature provides 
general recommendations that are practical to implement and consistent 
with good science, even if their impact on missing data rates is not certain. 
Although minimizing missing data is important, trials cannot be designed 
with this lone goal in mind. Design features to maximize retention often 
involve trade-offs, and these trade-offs must be considered carefully. 

After choosing a design that is appropriate for the study objectives and 
primary estimands, appropriate investigators and patients can be chosen 
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and trained. Trial conduct can proceed mindful of conditions and strate-
gies to maximize retention. Progress is monitored toward study-specific 
goals. Reasons for dropout other than adverse events and lack of efficacy 
can include patient decision, physician decision, protocol violation, and 
loss to follow-up. These reasons leave doubt about treatment-related cau-
sality and the impact the missing data may have on treatment comparisons. 
The ideal trial may be one in which the only reasons for discontinuing the 
initially randomized study drug are lack of efficacy, adverse events, and 
withdrawal of consent. Depending on the goals of the study, follow-up data 
after discontinuation of the initial study drug and/or initiation of rescue 
medications might be collected. 

To achieve such disposition results, proper processes, case report forms, 
informed consents, data capture procedures, minimal patient burden, 
patient accommodations, etc., need to be in place. However, trial sponsors, 
sites, and patients also need to believe in the importance of complete data. 
Rigorous selection of sites and patients, combined with education, monitor-
ing, and incentives can help in this regard. As LaVange and Permutt (2015) 
noted, a key in minimizing missing data is creating a culture wherein the 
importance of complete data is recognized. 

Importantly, changing attitudes and behaviors regarding missing data will 
likely help increase retention in drug groups and control groups, whereas 
enrichment designs, flexible dosing and other design features may have 
greater impact on drug groups than on the placebo groups.



25

4
Example Data

4.1 Introduction

Throughout this book, analyses are illustrated using various example data 
sets. Data sets are chosen for particular scenarios to match data characteris-
tics with the points and principles to be illustrated. A “hand-sized” data set 
of four subjects is used primarily in Chapter 5 to illustrate the mixed model 
equations to be solved for various longitudinal models. “Small” data sets 
of 50 subjects (25 per arm) with three post-baseline assessments are used to 
illustrate the actual implementations of those analyses. Two “large” data sets 
are used to illustrate the analyses in real settings, one where the rate of miss-
ing data was low and one where it was high. The following sections provide 
more details on each data set and how they were created.

4.2 Large Data Sets

The two large data sets were based on actual clinical trial data but were 
somewhat contrived to avoid implications for marketed drugs tested in those 
studies. Nevertheless, the key features of the original data were preserved. 
The original data were from two nearly identically designed antidepressant 
clinical trials that were originally reported by Goldstein et al. (2004) and 
Detke et al. (2004). Each trial had four treatment arms with approximately 
90 subjects per arm. The treatment arms included two doses of an experi-
mental medication (subsequently granted marketing authorizations in most 
major jurisdictions), an approved medication, and placebo. 

Assessments on the HAMD17 (Hamilton 17-item rating scale for depres-
sion; Hamilton 1960) were taken at baseline and Weeks 1, 2, 4, 6, and 8 in 
each trial. The Patient Global Impression of Improvement (PGI; Guy 1976) 
was taken at Weeks 1, 2, 4, 6, and 8 in each trial. The HAMD is a continuous 
variable. The PGI has 7 ordered categories from very much improved = 1, 
to very much worse = 7, with not improved = 4.
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All subjects from the original placebo arm were included along with a con-
trived drug arm that was created by randomly selecting 100 subjects from the 
non-placebo arms. In addition to including all the original placebo-treated 
subjects, additional placebo-treated subjects were randomly re-selected so 
that there were also 100 subjects in the contrived placebo arms. A new identi-
fication number was assigned to the re-selected placebo-treated subjects and 
outcomes were adjusted to create new observations by adding a randomly 
generated value to each original observation.

These trials are referred to as the low and high dropout large data sets. 
In the high dropout data set, completion rates were 70% for drug and 60% 
for placebo (see Table 4.1). In the low dropout data set, completion rates 
were 92% in both the drug and placebo arms. The dropout rates in the 
contrived data sets closely mirrored those in the corresponding original 
studies. The design difference that may explain the difference in dropout 
rates between these two otherwise similar trials was that the low dropout 
data set came from a study conducted in Eastern Europe that included 
a 6-month extension treatment period after the 8-week acute treatment 
phase, and used titration dosing. The high dropout data set came from 
a study conducted in the US that did not have the extension treatment 
period and used fixed dosing.

Visit-wise mean changes for subjects that completed the trials versus those 
who discontinued early are summarized in Figures 4.1 and 4.2 for the low 
and high dropout data sets, respectively. In the high dropout data set, sub-
jects who discontinued early had less favorable outcomes than completers. 
With only a few dropouts at each visit in the low dropout data set, trends 
were not readily identifiable.

4.3 Small Data Sets

Two versions of the small data set were created. The first version (com-
plete data) had complete data where all subjects adhered to the originally 
assigned study medication. The second version (missing data) was identi-
cal to the first except some data were missing data such as would arise 

TABLE 4.1 

Number of Observations by Week in Large Data Sets

High Dropout Low Dropout

Week 1 2 4 6 8 1 2 4 6 8

Placebo 100 92 85 73 60 100 98 98 95 92
Drug 100 91 85 75 70 100 98 95 93 92



27Example Data

Visit-wise mean change from baseline for completers and dropouts at each visit
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FIGURE 4.1 
Visit-wise mean changes from baseline by treatment group and time of last observation in the 
low dropout large data set.

Visit-wise mean change from baseline for completers and dropouts at each visit
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FIGURE 4.2
Visit-wise mean changes from baseline by treatment group and time of last observation in the 
high dropout large data set. 
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from subject dropout. Each data set had 50 subjects, 25 per arm, and 3 post-
baseline assessments. A complete listing of these data sets is provided at 
the end of this chapter.

The complete data set was created from the large, low dropout data set. 
All subjects that completed the trial and were from the investigational 
site with the largest enrollment were selected. Additional subjects were 
selected to provide 25 subjects per arm. These additional subjects were 
chosen based on gender and outcome in order to yield a data set that had 
a significant treatment effect at endpoint and was not balanced by gen-
der across treatments. Only data from Weeks 2, 4, and 8 were included, 
and then renamed as Time 1, Time 2, and Time 3. The number of obser-
vations by treatment and gender are summarized in Table 4.2. The most 
notable feature of the data is that the percentage of males was greater in 
Treatment 1 than in Treatment 2. 

Baseline and visit-wise means by treatment are summarized for the com-
plete data set in Table 4.3, and correlations between the baseline and post-
baseline assessments are summarized in Table 4.4. Mean baseline values 
were similar across treatments. Post-baseline changes increased over time 
in both treatments (negative changes indicate improvement), with greater 
changes in Treatment 2. Baseline values had moderate to weak negative 

TABLE 4.2 

Number of Subjects by Treatment and 
Gender in Small Example Data Set

Treatment n (%) Female n (%) Male Total

1 10(40) 15(60) 25
2 19(76) 6(24) 25
Total 29(58) 21(42) 50

TABLE 4.3 

Baseline Means by Treatment and Visit-Wise Means by Treatment 
in Complete Data

Treatment Time N Mean Median
Standard 
Deviation

1 Baseline 25 19.80 20 3.06
1 1 25 −4.20 −4 3.66
1 2 25 −6.80 −6 4.25
1 3 25 −9.88 −10 4.85
2 Baseline 25 19.32 20 4.89
2 1 25 −5.24 −6 5.49
2 2 25 −8.60 −8 5.39
2 3 25 −13.24 −13 5.54
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correlations with post-baseline changes, such that subjects with greater 
symptom severity at baseline tended to have greater post-baseline improve-
ment. Post-baseline values had strong positive correlations across time.

The small data set with (monotone) dropout had 18 completers for 
Treatment 1, the “placebo” group, and 19 completers for Treatment 2, the 
“experimental” group. Observations were deleted from the complete data 
set as follows: For Treatment 1, if change from baseline on the HAMD17 total 
score at Time 1 was less than an 8-point improvement, the probability of 
dropout was 30%; and, if the improvement at Time 2 was less than 10 points, 
the probability of dropout was 40%. For Treatment 2, if change at Time 1 
was less than a 12-point improvement, the probability of dropout was 20%; 
and, if the improvement at Time 2 was less than 12 points, the probability of 
dropout was 25%. In all instances, the value that triggered the dropout was 
included in the data. The number of subjects by treatment and time is sum-
marized in Table 4.5.

Visit-wise means by treatment are summarized for the data set with drop-
out in Table 4.6.

In contrast to the complete data set, the difference between treatments in 
mean change at Time 3 based on the observed data was somewhat smaller 
in the data with dropout. To further investigate the potential impact of 
incomplete data, the visit-wise mean changes from baseline for completers 
versus dropouts are summarized in Figure 4.3. Subjects that discontinued 
early tended to have worse outcomes than those that completed the trial, 

TABLE 4.4 

Simple Correlations between Baseline Values and 
Post-Baseline Changes in Small Example Data Set 

Baseline Time 1 Time 2 Time 3

Baseline 1.00 −0.26 −0.32 − 0.03
Time 1 1.00 0.76 0.52
Time 2 1.00 0.71
Time 3 1.00

TABLE 4.5 

Number of Subjects 
by Treatment and Time in 
Small Data Set with Dropout

Time

Treatment 1 2 3

1 25 20 18
2 25 22 19
Total 50 42 37
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mimicking dropout for lack of efficacy. However, Treatment 2 (drug-treated) 
subjects that discontinued at Time 1 tended to have better outcomes than 
those that completed the trial, thereby potentially mimicking dropout for 
adverse events.

Data from the small example data sets are listed in Tables 4.7 and 4.8.

0
–1
–2
–3
–4

M
ea

n 
ch

an
ge

 fr
om

 b
as

el
in

e

–5
–6
–7
–8
–9

–10
–11
–12
–13
–14

0 1
Visit

2 3

2

2

2

2

21

C

C

C

C

C
C

C

2 2 2
2 2 2

Dropout 1 Completer

2 TIME 1 Drop

1 TIME 1 Drop 1 TIME 2 Drop

2 TIME 2 Drop

1 1 1
1 1 12 CompleterC C C

C C C

1

FIGURE 4.3
Visit-wise mean changes from baseline by treatment group and time of last observation in the 
small example data set with dropout.

TABLE 4.6 

Visit-Wise Raw Means in Data with Dropout

Treatment Time N Mean Median
Standard 
Deviation

1 1 25 −4.20 −4.0 3.66
1 2 20 −6.80 −5.5 4.63
1 3 18 −10.17 −9.0 4.88
2 1 25 −5.24 −6.0 5.49
2 2 22 −8.14 −8.0 5.27
2 3 19 −13.11 −13.0 5.44
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TABLE 4.7 

Listing of HAMD17 Data from Small Example Data Set 

Treatment
Baseline 

Value

Changes from Baseline

Complete Data Data with Dropout

Subject Gender Time 1 Time 2 Time 3 Time 1 Time 2 Time 3

1 2 F 24 −11 −16 −24 −11 . . 
2 1 F 20 −6 −8 −5 −6 . . 
3 2 F 18 −1 −1 −9 −1 −1 . 
4 2 M 10 −9 −6 −9 −9 −6 −9
5 1 F 12 −6 −3 −9 −6 −3 −9
6 1 F 14 −6 −10 −10 −6 −10 −10
7 2 F 17 −7 −7 −14 −7 −7 −14
8 1 F 21 −2 −9 −9 −2 −9 −9
9 1 F 19 −9 −6 −10 −9 −6 . 
10 2 F 19 −13 −12 −14 −13 −12 −14
11 2 F 20 −11 −15 −20 −11 −15 −20
12 2 F 19 −7 −15 −19 −7 . . 
13 1 M 20 −9 −12 −13 −9 −12 −13
14 1 F 19 −6 −12 −16 −6 −12 −16
15 2 F 19 −12 −15 −18 −12 −15 −18
16 1 M 19 −3 −11 −17 −3 −11 −17
17 2 F 20 −9 −13 −19 −9 −13 −19
18 1 F 23 −7 −10 −15 −7 −10 −15
19 1 M 26 −5 −5 −11 −5 −5 −11
20 2 F 19 0 −1 −8 0 −1 −8
21 2 F 24 −12 −15 −19 −12 −15 −19
22 2 M 19 0 −2 −10 0 −2 −10
23 2 F 20 −7 −8 −13 −7 −8 −13
24 1 M 20 1 −1 −6 1 −1 −6
25 1 F 22 0 −4 −9 0 −4 −9
26 2 F 23 −12 −17 −22 −12 −17 −22
27 1 M 21 −1 −2 −3 −1 −2 −3
28 1 M 21 −2 −2 −2 −2 −2 −2
29 2 F 20 −3 −8 −13 −3 −8 −13
30 1 F 19 −2 −2 0 −2 −2 . 
31 2 F 13 −1 −4 −11 −1 −4 −11
32 1 M 24 −10 −14 −20 −10 −14 −20
33 2 M 18 −4 −10 −15 −4 −10 −15
34 1 M 21 −2 −1 −6 −2 −1 −6
35 2 F 20 −5 −10 −15 −5 −10 −15
36 1 M 20 −4 −4 −10 −4 . .

(Continued)
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TABLE 4.8 

Listing of PGI Improvement from the Small 
Example Data Set

Subject Treatment Time 1 Time 2 Time 3

1 2 3 2 2
2 1 4 4 5
3 2 4 4 4
4 2 6 2 1
5 1 2 5 4
6 1 2 2 2
7 2 2 2 2
8 1 4 2 2
9 1 2 3 2
10 2 2 2 1
11 2 3 2 2
12 2 2 2 1
13 1 3 3 2
14 1 3 1 1
15 2 3 3 2

(Continued)

TABLE 4.7 (Continued)

Listing of HAMD17 Data from Small Example Data Set 

Treatment
Baseline 

Value

Changes from Baseline

Complete Data Data with Dropout

Subject Gender Time 1 Time 2 Time 3 Time 1 Time 2 Time 3

37 2 F 20 −3 −6 −12 −3 −6 .
38 1 F 22 −3 −5 −6 −3 −5 −6
39 2 M 20 −6 −9 −13 −6 −9 −13
40 1 M 18 −5 −9 −15 −5 . .
41 2 M 20 5 −2 −10 5 −2 −10
42 1 M 15 0 −2 −8 0 −2 −8
43 1 M 19 −3 −9 −11 −3 . .
44 2 F 8 −6 −3 −7 −6 −3 −7
45 1 M 20 −9 −11 −9 −9 −11 −9
46 2 M 20 −6 −5 −9 −6 . .
47 2 F 35 −8 −14 1 −8 −14 1
48 1 M 17 −10 −14 −14 −10 −14 −14
49 1 M 23 4 −4 −13 4 . .
50 2 F 18 −1 −1 −9 −1 −1 .
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TABLE 4.8 (Continued)

Listing of PGI Improvement from the Small 
Example Data Set

Subject Treatment Time 1 Time 2 Time 3

16 1 3 2 2
17 2 3 2 2
18 1 3 3 2
19 1 4 4 3
20 2 4 4 3
21 2 3 3 1
22 2 4 3 2
23 2 3 3 2
24 1 4 4 2
25 1 4 3 2
26 2 2 2 1
27 1 4 4 4
28 1 4 4 4
29 2 4 3 2
30 1 4 4 4
31 2 2 2 1
32 1 2 2 1
33 2 4 3 2
34 1 4 4 3
35 2 3 2 2
36 1 3 3 2
37 2 3 3 2
38 1 3 3 4
39 2 2 2 2
40 1 2 1 1
41 2 4 3 2
42 1 4 3 2
43 1 4 4 3
44 2 1 2 1
45 1 5 3 4
46 2 3 5 3
47 2 5 7 .
48 1 3 3 3
49 1 4 3 3
50 2 4 4 4
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5
Mixed-Effects Models Review

5.1 Introduction

Some readers will find the material in this chapter most useful before pro-
ceeding to subsequent chapters. Other readers may benefit more from refer-
ring to this chapter during or after digesting the contents of subsequent 
chapters. The intent is to provide a general review of mixed-effect models 
and let readers refer to it as best suited to their individual needs. As such, 
readers are not obligated to digest this chapter before proceeding.

Mixed-effects models provide a flexible analytic framework for clinical 
trial data. The term mixed model refers to the use of both fixed and random 
effects in the same analysis. Fixed effects have levels that are of primary 
interest and would be used again if the experiment were repeated. Random 
effects have levels that are not of primary interest, at least usually not of 
primary interest in clinical trials, but rather are a random selection from 
a larger set of levels. In the clinical trial context, subject effects are usually 
random effects, while treatment levels are usually fixed effects. 

The use of both fixed and random effects in the same model can be thought 
of hierarchically, and there is a close relationship between mixed models 
and the class of models referred to as hierarchical linear models. The hierar-
chy often includes one level for subjects and another level for measurements 
within subjects. There can be more than two levels of the hierarchy, such as 
investigative sites, subjects within sites, and measurements within subjects.

Although the following example is simplistic, it provides conceptual 
and practical motivation for the use of mixed models for analyses of 
longitudinal clinical trial data. Consider a typical clinical trial scenario 
where the fixed effect parameters explain the average difference between 
treatments and the random effect parameters represent the variability 
among subjects (and/or sites). It is possible to fit a model with subject as a 
fixed effect, with for example, a unique intercept (and possibly slope) for 
each subject. In addition to mistreating the conceptually random subject 
effect as fixed, the analysis estimates one intercept parameter for each 
subject. Alternatively, fitting a random subject intercept requires estimat-
ing only one variance parameter that represents the spread of the random 
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intercepts around the common intercept. Therefore, conceptual and prac-
tical motivations support use of mixed-effect models for analyses of clini-
cal trial data.

5.2 Notation and Definitions

Laird and Ware (1982) introduced the general linear mixed-effects model to 
be any model that satisfies

 Yi = Xiβ + Zibi + εi (5.1)

 bi ~ N(0, D)

 εi ~ N(0, Σi )

 b1 … bN, ε1 … εN independent 

where Yi is the ni-dimensional response (column) vector for patient i; β is the 
p-dimensional vector of fixed effects; bi is the q-dimensional vector of ran-
dom (patient-specific) effects; Xi and Zi are (ni × p)- and (ni × q)- dimensional 
matrices relating the observations to the fixed and random effects, 
respectively; εi is the ni-dimensional vector of residuals; D is a general 
(q × q)-dimensional covariance matrix with (i,j) element dij = dji; and Σi is a 
general (ni × ni)-dimensional covariance matrix (usually the same for all i). 
It follows from this model that, marginally,

 Yi ~ N(Xiβ, V)

 DZ′ + Σand V = Zi i i

In other words, mixed-effects models include fixed and random effects, 
with overall variability (V in the above equation) that can be partitioned into 
a part due to the random effects DZ( )′Zi i  and a part due to the errors (Σi). 
In contrast, analysis of variance models include only fixed effects (apart from 
the residuals). 

In clinical trials, the subject-specific (random) effects are seldom the focus. 
Rather, the trials are typically designed to assess differences in fixed effects, 
most notably treatment effects. However, accounting for the random effects 
is needed in order to properly assess the precision of estimates and to make 
the most appropriate inferences regarding the fixed effects. Specifically, the 
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difference between subjects and/or the similarity within subjects must be 
taken into account in order to have standard errors and confidence intervals 
that reflect the true uncertainty in parameter estimates. 

5.3 Building and Solving Mixed Model Equations

Data from four subjects (1, 7, 9, and 14) in the small complete data set are used 
to illustrate the formulation of the mixed model equations. These data are 
listed below

Change from Baseline 
on HAMD17

Subject Treatment Baseline Time1 Time2 Time3

1 2 24 −11 −16 −24
7 2 17 −7 −7 −14
9 1 19 −9 −6 −10
14 1 19 −6 −12 −16

Mechanically, mixed model equations are constructed by matrix manipu-
lations. However, concepts underlying the manipulations are covered before 
illustrating the actual mechanics. The first step, whether mechanical or con-
ceptual, is to define the linear model. Illustrations begin with a simple fixed 
effects model for which ordinary least squares can be applied. Subsequently, 
more detailed generalized least squares and mixed-effects approaches are 
illustrated. 

5.3.1 Ordinary Least Squares

For the hand-sized example data listed above, consider a fixed effects model 
where only Time 3 data are used as the dependent variable, with treatment 
and intercept as the only fixed effects. In scalar notation

 Yij = µ + βi + εij

where µ is the population mean (intercept), βi is the fixed effect of treatment 
i, and εij is the error (residual) for subject j in treatment i.

The equations that solve for the unknown parameters (µ, β1, and β2) 
in this model can be constructed so as to minimize the error sums of 
squares. The sum of squared residuals for linear models is minimized by 
equating the means of the observed data to the associated expected values 
under the model. 
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As the simplest case, the squared sum of deviations from the mean Σ −y yi( )2 
is smaller than the sum of squared deviations around any other provisional 
value, c, ∑ −y ci( )2; hence, the least square estimate of the grand mean µ is the 
sample mean, y. Equivalently, the estimate of grand mean can be obtained 
by equating the sum of observed values with the sum of expected values 
under the assumed model: ∑ = ∑ = µ�y E Y Ni i

ˆ( ) . 

Thus, for each effect in the model (except residual error), compute a sum 
such that each observation that contains the effect is included in the sum. 
These sums form a vector of “observations” (observed data summaries), Y. 
In this model, equations are needed for µ and for each treatment group, three 
equations total. All observations contain the effect of µ; hence, the sum for 
the µ effect is the sum of all observations. Likewise, the sum for each treat-
ment group equation is the sum of all observations for the subjects in that 
group. The transpose of the Y vector of sums is (−64, −26, −38).

The next step is to construct the ordinary least squares equations by writ-
ing the model associated with each sum in Y and equating each sum to the 
associated sum of the model-based predictions. The sum for the µ equation 
contains all four observations; therefore, the µ equation contains four µ and 
two βi of one kind or another. The model and the associated equations can be 
written in matrix form as follows:

 Xβ = Y

 

=














µ
β
β

















=
−
−
−















4 2 2
2 2 0
2 0 2

64
38
26

1

2  

While it is important to bear in mind the concept of equating sums to 
effects, the task of building the equations (coefficient matrix and right-
hand side) is made much easier via the use of design (aka incidence) 
matrices. Incidence matrices are matrices of 0s and 1s that relate observa-
tions to the various effects. These matrices have a row for each observa-
tion and a column for each effect in the model. Whenever an observation 
contains an effect, a 1 is placed in the cell corresponding to the appro-
priate row and column, otherwise place a 0. In the example above, the 
X incidence matrix is

 



















1 1 0
1 1 0
1 0 1
1 0 1
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Pre-multiplying X by its transpose (X’) creates the coefficient matrix (X’X): 

 

































=














1 1 1 1
1 1 0 0
0 0 1 1

1 1 0
1 1 0
1 0 1
1 0 1

4 2 2
2 2 0
2 0 2

 

Pre-multiplying the vector of observations Y by X’ creates the appropriate 
sums: 

 















−
−
−
−



















=
−
−
−















1 1 1 1
1 1 0 0
0 0 1 0

24
14
10
16

64
38
26

 

Hence, the matrix equations are now 

 (X’X)β = X’Y

And the solutions to the ordinary least square equations are 

 β = (X’X)−1 X’Y

Therefore, solving the equations requires an inverse of the coefficient 
matrix X’X. Unfortunately, the equations as written cannot be solved due to 
dependencies. That is, the two equations for the two treatments sum to the 
equation for µ. Therefore, the equations are not independent. The coefficient 
matrix is said to be singular and it cannot be inverted, nor can the equations 
be solved using iterative techniques.

The solution to this dilemma is to create a generalized inverse by first impos-
ing constraints on the coefficient matrix that eliminate the dependency. For 
example, the coefficients for one row of the equations, which corresponds to one 
of the effects in β, can be set equal to zero, which eliminates the dependency of 
the two treatment equations summing to the µ equation. When a dependency 
is eliminated by using coefficients of zero for a row, zeros must also replace the 
original coefficients in the corresponding column for that effect. 

The effects of imposing constraints, in addition to facilitating inversion of 
the coefficient matrix, include:

 1. The expected values of solutions for fixed effects do not equal the 
actual fixed effect, but rather equal estimable functions of the fixed 
effects.
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 2. Solutions depend on the specific constraint(s) imposed. Different 
constraints for the same set of equations yield different solutions 
that reflect different estimable functions of the fixed effects. 

 3. Typically, regardless of specific constraints, the expected value of 
the difference in solutions reflects the difference in fixed effects. 
That is, the differences are estimable even if the actual effects 
are not.

 4. Random effects solutions are unaffected by the constraints 
imposed on the fixed effects equations, and are said to be “transla-
tion invariant.”

For the present simple example, one constraint that can be imposed is set 
the µ equation equal to 0, or simpler still, not include µ in the model. With 
this constraint the equations are: 

 







β
β











= −
−







2 0
0 2

26
38

1

2
 

The solutions vector β’ is (−13, −19), which in this simplistic example is 
also the simple averages for each treatment. With this constraint, the first 
solution represents µ + β1 and the second solution is µ + β2. The solutions 
in this unique example are conveniently the least square means (lsmeans) 
for the treatments. Typically, the estimable functions will be more complex 
and less convenient. 

An lsmean is an estimate from a linear model, whereas a raw (arithmetic) 
mean is the simple average. In this simple model, the lsmeans for treatment 
are also the simple averages. As illustrated in later sections, the lsmeans sel-
dom equal the raw means because the lsmeans are adjusted for other terms 
(covariates) in the model, thereby reflecting the independent effect of the 
fixed effects. 

Another interesting aspect of this simple model is that changing the data 
for a subject in one treatment only influences the solution for that effect and 
the other solution is unaffected. For example, if the outcome for Subject 1 was 
0 instead of 24 then β’ = (−13, −7). Later examples with more complex models 
will illustrate that such independence is usually not the case as estimates of 
fixed effects are typically correlated. That is, changing the data for a subject 
in treatment 1 can change the estimates of not just treatment 1 but also other 
effects in the model. 

Another possible constraint would be to “zero out” the equation for β2. The 
resulting equations with this constraint are
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













µ
β
β

















=
−
−















4 2 0
2 2 0
0 0 0

64
26
0

1

2  

The solution vector β’ = 19, 6, 0. The estimable functions with these solu-
tions are that the first element = µ + β2 and the second element is β1 – β2.

A slightly more complex model that includes in addition to treatment the 
fixed covariate of baseline severity can be fit by including the actual covari-
ate values in X. The appropriate X matrix is:

 

X

1 1 0 19
1 1 0 19
1 0 1 24
1 0 1 17

1 2 3µ β β β

=



















 

The resulting coefficient matrix (X’X) has four effects, µ, two treatment 
effects, and the covariate. 

 



















µ
β
β
β



















=

−
−
−

−



















4 2 2 79
2 2 0 38
2 0 2 41
79 38 41 1587

64
26
38

1308

1

2

3  

The equation for the covariate is in the fourth row (and fourth column). 
The value in the first position of row 4 (79) is the sum of all baseline val-
ues, the second and third positions are sums of the baseline values in the 
respective treatment groups (38, 41), and the last entry (1587) is the sum of 
the squared baseline values. The last entry in the Y vector (−1308) is the sum 
of cross products. Adding this continuous covariate does not add a depen-
dency, and (as before) only one constraint is needed to yield a coefficient 
matrix that can be inverted. 

To fit more complex models with multiple fixed effects, the same process is 
used as with simple models, but the design (incidence) matrices and coefficient 
matrices are more extensive. Recall that the example data from four subjects 
includes three assessments per subject taken at 3 time points. To include time 
in the model, the X matrix now has 12 rows and 6 columns to associate the 
12 observations with the 6 fixed effects (µ, 2 treatments, and 3 time points). 
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µ β β τ τ τ

=







































X

1 1 0 1 0 0
1 1 0 1 0 0
1 1 0 0 1 0
1 1 0 0 1 0
1 1 0 0 0 1
1 1 0 0 0 1
1 0 1 1 0 0
1 0 1 1 0 0
1 0 1 0 1 0
1 0 1 0 1 0
1 0 1 0 0 1
1 0 1 0 0 1

1 2 1 2 3

 

And the coefficient matrix and right-hand sides are 

 























µ
β
β
τ
τ
τ

























=

−
−
−
−
−
−























12 6 6 4 4 4
6 6 0 2 2 2
6 0 6 2 2 2
4 2 2 4 0 0
4 2 2 0 4 0
4 2 2 0 0 4

138
59
79
33
41
64

1

2

1

2

3  

To solve these equations, two constraints are needed; for example, the last 
treatment equation and the last time equation can be set to zero. 

 























µ
β
β
τ
τ
τ

























=

−
−

−
−























12 6 0 4 4 0
6 6 0 2 2 0
0 0 0 0 0 0
4 2 0 4 0 0
4 2 0 0 4 0
0 0 0 0 0 0

138
59
0
33
41
0

1

2

1

2

3  

The solution vector β’ = 17.67, 3.33, 0, 7.75, 5.75, 0. And the lsmeans derived 
from these solutions are



43Mixed-Effects Models Review

 

−
−
−

−
−

trt 1 9.83

trt 2 13.16
Time 1 8.25

Time 2 10.25
Time 3 16.00  

While it is easy to see that the differences in solutions for the treatment 
effects and the time effects match the differences in lsmeans, the estimable 
functions represented by each solution are more complex when more con-
straints are imposed.

It is often of interest to model the effects of interactions between main 
effects. For example, the effect of treatment may not be constant over time. The 
X matrix for the example data with a model that includes the effects of treat-
ment (βi), time (τj) and the treatment-by-time interaction (βτij) is given below.

µ β β τ τ τ βτ βτ βτ βτ βτ βτ

=









































X

1 1 0 1 0 0 1 0 0 0 0 0
1 1 0 1 0 0 1 0 0 0 0 0
1 1 0 0 1 0 0 1 0 0 0 0
1 1 0 0 1 0 0 1 0 0 0 0
1 1 0 0 0 1 0 0 1 0 0 0
1 1 0 0 0 1 0 0 1 0 0 0
1 0 1 1 0 0 1 0 0 1 0 0
1 0 1 1 0 0 1 0 0 1 0 0
1 0 1 0 1 0 0 0 0 0 1 0
1 0 1 0 1 0 0 0 0 0 1 0
1 0 1 0 0 1 0 0 0 0 0 1
1 0 1 0 0 1 0 0 0 0 0 1

1 2 1 2 3 11 12 13 21 22 23

 

Nested effects are similar to interaction effects except that one factor of 
the interaction effect does not appear as a main effect. Consider again the X 
matrix described earlier for the model with treatment and baseline severity 
as fixed effects:

 

µ β β γ



















1 1 0 19
1 1 0 19
1 0 1 24
1 0 1 17

1 2
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The X matrix for a model with categorical treatment, baseline severity as 
a covariate, and the treatment-by-baseline severity interaction is:

 

µ β β γ βγ βγ



















( ) ( )

1 1 0 19 19 0
1 1 0 19 19 0
1 0 1 24 0 24
1 0 1 17 0 17

1 2 1 2

 

The X matrix for a model that included treatment and baseline severity nested 
within treatment is:

 

µ β β βγ βγ



















( ) ( )

1 1 0 19 0
1 1 0 19 0
1 0 1 0 24
1 0 1 0 17

1 2 1 2

 

As an artifact of the small example, both subjects in treatment 1 have a 
value of 19 for baseline severity, which creates an additional dependency 
making the equations unsolvable. However, in realistic scenarios where not 
all baseline values within a treatment were the same, the equations would be 
solvable and the interaction model and the nested model would yield identi-
cal fits to the data and identical treatment contrasts. 

5.3.2 Generalized Least Squares

Ordinary least squares assume that observations are independent, an assump-
tion that is not justifiable when subjects are measured repeatedly over 
time. Therefore, now assume that errors have a general covariance matrix, 
Var[ε] = ∑, such that the model becomes 

 Y = Xβ + ε  ε ~ (0, ∑)

Generalized least squares minimizes the generalized error sum of squares 

 SSEg = (Y − Xβ)′ ∑−1 (Y − Xβ)

This leads to the generalized normal equations 

 (X′ ∑−1 X) β = X′ ∑−1 Y

and the GLS estimator 

 β = ′Σ ′Σ− − −
g

ˆ (X X) X Y1 1
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5.3.3 Mixed-Effects Models

As noted earlier, the mixed model is written as 

 Y = Xβ + Zb + ε

where terms are the same as in the general linear model described above 
except for the addition of the known design matrix, Z, and the vector b of 
unknown random-effects parameters. The Z matrix can contain either con-
tinuous or dummy variables, just like X. The model assumes that b and ε are 
normally distributed with 

 

ε








 =











ε








 =











b

b

E 0
0

Var G 0
0 R

 

The variance of Y is V = ZGZ′ + R, and is modeled via the random-effects 
design matrix Z and covariance structures G and R. 

Building the coefficient matrix and right-hand side proceeds as before, 
albeit with more steps to incorporate both the X and Z design matrices. 
For simplicity, consider the example data and a model that includes only 
treatment and a random intercept for each subject, ignoring the correlation 
between the repeated observations (G and R) for now. Because the fixed 
effects in this model are the same as previously described, the X matrix will 
be the same. The Z matrix for this example is as follows:

 









































1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1
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The mixed model equations are 

 







β







 = ′

′






X'X X'Z
Z'X Z'Z b

X Y
Z Y

 

which for the example data yields:

 



























µ
β
β





























=

−
−
−
−
−
−
−



























b
b
b
b

12 6 6 3 3 3 3
6 6 0 0 0 3 3
6 0 6 3 3 0 0
3 0 3 0 3 0 0
3 0 3 0 3 0 0
3 3 0 0 0 3 0
3 3 0 0 0 0 3

138
59
79
51
28
25
34

1

2

1

2

3

4
 

The mixed model equations that take into account the within-subject cor-
relations include the G and R matrices. In practice estimates of G and R, 
which are denoted Ĝ  and R̂, respectively, are usually needed since the true 
values are not known. Estimates of β and b can be obtained from solving the 
following equations (Henderson 1984):

 

′ ′
′ ′















β











= ′
′













− −

− − −

−

−

�

�
X R̂ X X R̂ Z

Z R̂ X Z R̂ Z+Ĝ b

X R̂ Y

Z R̂ Y

1 1

1 1 1

1

1

 

The solutions can obtained as

 

�

��

β = ′ ′

′ − β

− − −

−

(X V̂ X) X V̂ Y

b=ĜZ V̂ (Y X )

1 1

1

 

If G and R are known, β� is the best linear unbiased estimator (BLUE) of β, 
and b�  is the best linear unbiased predictor (BLUP) of b (Searle 1971; Harville 
1988, 1990). In this context, “best” means minimum mean squared error. 

The covariance matrix of β − β −( , b b)� �  is 
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= ′ ′
′ ′ +













− −

− − −

−

Z Z
C X R X X R Z

R X R Z G

1 1

1 1 1

 

Again, in practice Ĝ  and R̂ are substituted into the preceding expression to 
obtain 

 

= ′ ′
′ ′ +













− −

− − −

−

Z Z
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as the approximate variance-covariance matrix of β − β −( , b b)� � . The matrix C 
has as diagonal elements error variances and off-diagonals are error covari-
ances. With estimated G and R (Ĝ and R̂), the solutions are approximate 
BLUE and BLUP, which are often referred to as empirical BLUE and BLUP 
(EBLUE and EBLUP). 

True sampling variability is underestimated by Ĉ because the uncertainty 
in estimating G and R is not taken into account. Inflation factors have been 
proposed (Prasad and Rao 1990), but they tend to be small for data sets that 
are fairly balanced. Another approach to accounting for the underestimation 
of uncertainty is approximate t and F statistics that are based on Kenward-
Roger or Satterthwaite-based degrees of freedom (SAS 2013). 

Returning to the example data introduced at the beginning of Section 5.3 
and a model with treatment and a random intercept, now incorporating 
G and R, assuming values of 1 for both the random intercept and residual 
variances, the mixed model equations become
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A residual variance of 1 results in no change to the X’X, X’Z, and Z’X parts 
of C. However, the Z’Z part of C now has 4s as non-zero values rather than 3s 
due to the addition of G−1 to that part of the coefficient matrix. If the residual 
variance again = 1 and the random intercept variance = 9, then the coefficient 
matrix and right-hand side become
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Note that with a larger value for intercept variance, the Z’Z part of C is 
augmented with smaller values.

If the residual variance = 9 and the random intercept variance = 1 then the 
coefficient matrix and right-hand side become
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Note that with a larger residual variance the values in R−1 are smaller; 
therefore, the X’R−1X, X’R−1Z, and Z’R−1X parts of C and the right-hand side 
Z’R−1Y are also smaller. 

5.3.4 Inference Tests

Inferences regarding fixed- and random-effects parameters in the mixed 
model are obtained by testing the hypothesis 
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where L is a contrast vector or matrix with coefficients that pull the needed 
elements from β and b. When L consists of a single row, a general t statistic 
is constructed as illustrated below by again using L to pull the appropri-
ate solutions for the numerator and the appropriate variances and covari-
ances from the coefficient matrix C for the denominator. For example, the 
variance of the difference between Treatment 1 and Treatment 2 is equal 
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to the variance of Treatment 1 + the variance of Treatment 2 – 2 times 
the covariance between Treatments 1 and 2 (McLean and Sanders 1988; 
Stroup 1989). The L vector is set up to extract these elements from the 
coefficient matrix. 
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Under the assumed normality of b and ε, t is in general only approximately 
t-distributed, and its degrees of freedom must be estimated. With v� being the 
approximate degrees of freedom, the associated confidence interval is 
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where αtv , /2�  is the (1−α/2)100th percentile of the tv� distribution. If the rank of 
L is greater than 1, the following general F statistic can be constructed: 
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where �r = ′rank(LCL ). Analogous to t, F in general has an approximate 
F  distribution with r numerator degrees of freedom and v�  denominator 
degrees of freedom (SAS 2013). 

5.4  Impact of Variance, Correlation, and Missing 
Data on Mixed Model Estimates 

5.4.1  Impact of Variance and Correlation in 
Complete and Balanced Data 

Important properties of mixed models can be illustrated by examples. For 
that purpose, consider the hand-sized complete data set of four subjects intro-
duced at the beginning of Section 5.3. To these data fit a model that includes 
treatment, time, treatment-by-time interaction, and a random intercept for 
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each subject. Further assume the following four combinations of values for 
the intercept (between subject) (σb

2) and residual (σe
2) variances: 

Random Intercept 
Variance

Residual 
Variance

Total 
Variance

1 1 2
1 9 10
5 5 10
9 1 10

Lsmeans and standard errors for these scenarios are summarized in 
Table 5.1.

With complete data, the values of variance components do not influ-
ence estimates of fixed effect means. The Time 3 and treatment main effect 
 contrast lsmeans are the same across the four combinations of variance 
components. However, the variance components do influence the standard 
errors. As expected, increasing the total variance from 2 to 10 increased the 
standard error of Time 3 and treatment main effect lsmeans (not shown) and 
of the standard error of the contrast between these lsmeans. Among the three 

TABLE 5.1

Least Squares Means and Standard Errors from Mixed Model 
Analyses of Complete Data from the Hand-Sized Data Set

Scenario Treatment LSMEANS Contrast Contrast SE

Treatment main effect results 

σ = σ =1, 1b
2

e
2 1 −9.83 3.33 1.15

2 −13.16

σ = σ =9, 1b
2

e
2 1 −9.83 3.33 3.06

2 −13.16
σ = σ =5, 5b

2
e
2 1 −9.83 3.33 2.58

2 −13.16

σ = σ =1, 9b
2

e
2 1 −9.83 3.33 2.00

2 −13.16

Time 3 results
σ = σ =1, 1b

2
e
2 1 −13.00 6.00 1.41

2 −19.00

σ = σ =9, 1b
2

e
2 1 −13.00 6.00 3.16

2 −19.00

σ = σ =5, 5b
2

e
2 1 −13.00 6.00 3.16

2 −19.0

σ = σ =1, 9b
2

e
2 1 −13.00 6.00 3.16

2 −19.00
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scenarios where total variance = 10, that is total variance is equal, standard 
errors for the treatment main effect contrast increased as between-subject 
variance increased and residual variance decreased. In contrast, variance 
components did not influence standard errors of the Time 3 contrast. 

The results in Table 5.1 can be explained as follows. As the between- subject 
variance increases, the covariance within subjects increases. That is, as 
the variance between subjects increases, correlation between the repeated 
 observations on the same subjects increase and the amount of information 
gained from additional assessments on the same subject is decreased. Hence, 
standard errors for the treatment main effect are larger when the between-
subject variance (and within-subject covariance) is greater. For the Time 
3 contrast, a single point in time, the treatment contrast standard error is 
not influenced by the ratio of the variance components, only total variance. 
If data were unbalanced, (e.g., due to missing values) variance ratios would 
influence treatment contrasts at specific time points. 

Generally, as the eigenvalues of G increase, G−1 contributes less to the equa-
tions and b�  is closer to what it would be if b contained fixed-effects param-
eters. When the eigenvalues of G decrease, G−1dominates the equations and b�  
is close to 0. For intermediate cases, G−1 can be viewed as shrinking the esti-
mates of b toward 0 (Robinson 1991). This shrinkage can be seen in the esti-
mates of the random intercepts across the varying levels of G and R. These 
results are summarized in Table 5.2. 

The observation for Subject 1 at Time 3 (−24) was an improvement of 5 points 
more than the group mean. When b

2σ  = 9 and e
2σ  =1 this 5-point advantage 

yielded an estimate for the random intercept of −3.70; that is, a result better 
than group average. However, when 5b

2σ =  and 5e
2σ = , the same observation 

yielded a random intercept estimate of −2.88, and when 1b
2σ = and 9e

2σ = , 
the estimate was further shrunk to −0.96. The estimate of the intercept when 

5b
2σ =  and 5e

2σ =  was the same as when 1b
2σ =  and 1e

2σ =  because the shrink-
age is determined by variance ratios. A similar effect is seen in subjects who 
were doing worse than group mean, but of course the sign of the intercept is 
opposite, reflecting below-average intercepts for subjects with observations 

TABLE 5.2

Estimated Intercepts and Residuals at Time 3 for Subject 1 from 
Mixed Model Analyses of Complete Data across Varying Values of 
G and R

Scenario
Observed 

Value
Group 
Mean

Estimated 
Intercept

Predicted 
Value Residual

σ = σ =1, 1b
2

e
2 −24 −19 −2.88 −21.88 −2.12

σ = σ =9, 1b
2

e
2 −24 −19 −3.70 −22.70 −1.30

σ = σ =5, 5b
2

e
2 −24 −19 −2.88 −21.88 −2.12

σ = σ =1, 9b
2

e
2 −24 −19 −0.96 −19.96 −4.04
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below average. Estimates of the intercept are again regressed toward the 
mean in accordance with the ratio of the variance components. 

5.4.2  Impact of Variance and Correlation in 
Incomplete (Unbalanced) Data

Next, consider the impact of variance components in unbalanced (incom-
plete) data by re-examining the example data, but delete the Time 2 and 
Time  3 values for Subject 1 and the Time 3 value for Subject 9. Lsmeans, 
contrasts, and standard errors are summarized in Table 5.3. In contrast to 
the scenario with complete and therefore balanced data, with missing and 
therefore unbalanced data, variance components influenced both lsmeans 
and standard errors.

For the treatment main effect, increasing total variance again increased 
standard errors, and when b

2σ  was a greater fraction of total variance, stan-
dard errors were larger. Changes in the lsmeans due to incomplete data were 
greater for the Treatment 2 main effect than the Treatment 1 main effect 
because more data were deleted for Treatment 2. The Time 3 contrast stan-
dard errors changed with variance components but in the opposite direction 

TABLE 5.3

Least Squares Means and Standard Errors from Mixed Model 
Analyses of Incomplete Data from the Hand-Sized Data Set

Scenario Treatment LSMEANS Contrast Contrast SE

Treatment main effect results
σ = σ =1, 1b

2
e
2 1 −10.70 0.00 1.30

2 −10.70

σ = σ =9, 1b
2

e
2 1 −10.60 0.60 3.12

2 −11.20

σ = σ =5, 5b
2

e
2 1 −10.70 0.00 2.87

2 −10.70

σ = σ =9, 1b
2

e
2 1 −10.78 −0.65 2.40

2 −10.13

Time 3 results
σ = σ =1, 1b

2
e
2 1 −15.50 −0.50 1.91

2 −15.00

σ = σ =9, 1b
2

e
2 1 −15.29 0.51 3.42

2 −15.80

σ = σ =5, 5b
2

e
2 1 −15.50 −0.50 4.17

2 −15.00

σ = σ =1, 9b
2

e
2 1 −15.86 −1.66 4.47

1 −14.20
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as for the treatment main effect. With a fixed total variance, as b
2σ  increases, 

e
2σ  decreases and the within-subject correlation increases. As with complete 

data, larger within-subject correlation resulted in smaller gain in precision 
from repeated observations. However, with fixed total variance, for a con-
trast at a single time point, as b

2σ  increases, e
2σ  decreases, which decreases 

error variance and reduces the standard error. 
The shrinkage of random effect estimates can again be seen in the esti-

mates of the random intercepts across the varying levels of b
2σ   and e

2σ . 
These results are summarized in Table 5.4 for Subject 1. The observation for 
Subject 1 was missing at Time 2 and Time 3. At Time 1, Subject 1’s observa-
tion was 2 points better than the group mean. In contrast to the complete 
data, this is the only evidence about Subject 1 and it is easier to see how b

2σ  
and e

2σ  influence estimates.
In this simple situation, the estimate of the random intercept for Subject 1 

is calculated as that subject’s deviation from the mean multiplied by the 
 shrinkage factor determined by the variance components. With Subject 1, 
the two-point superiority in improvement resulted in an estimated inter-
cept of −1.8 when 9b

2σ = , 1e
2σ = . The estimated intercept is 90% of the mag-

nitude of the deviation from the group mean when the ratio of b
2σ  to total 

variance (9/(9 + 1)) is 90%. 
With 5, 5b

2
e
2σ = σ =  and 1, 1b

2
e
2σ = σ = , the estimated intercept was −1.0, 

50% of the observed deviation from the group mean, and the ratio of b
2σ  

to total variance = 0.5. With 1, 9b
2

e
2σ = σ = , the estimated intercept was 

−0.2, 1/10 the observed deviation, and the ratio of b
2σ  to total variance = 0.1. 

If Subject 1’s observation had been 2 points below the group mean, the esti-
mated intercept would have been the same magnitude but opposite in sign 
(−2 × the shrinkage factor). If the observed deviation had been 4 points above 
average, the estimated intercept would have been calculated as four × the 
shrinkage factor. 

These results illustrate that b
2σ  and e

2σ  define the regression of  estimated 
intercept on deviation from the group mean. In this simple setting, 

TABLE 5.4

Estimated Intercepts and Group Means at Time 3 for Subject 1 
from Mixed Model Analyses of Incomplete Data across Varying 
Values of G and R

Scenario Group Mean Estimated Intercept Predicted Value

σ = σ =1, 1b
2

e
2 −15.00 −1.00 −16.00

σ = σ =9, 1b
2

e
2 −15.80 −1.80 −17.60

σ = σ =5, 5b
2

e
2 −15.00 −1.00 −16.00

σ = σ =1, 9b
2

e
2 −14.20 −0.20 −14.40
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when b
2σ /( b

2σ  + e
2σ ) = 0.9, the regression = 0.9, when b

2σ /( b
2

e
2σ + σ ) = 0.5, the 

 regression = 0.5, etc. This makes intuitive sense because b
2σ  and e

2σ  define the 
intra-class correlation (a.k.a. repeatability) of the multiple observations on 
the same subjects. As error variance ( e

2σ ) decreases, the reliability or repeat-
ability of observations increases and the observations more closely reflect 
the true value; hence, a smaller shrinkage factor is applied.

The same general relationships were present in the complete data, but they 
were less obvious because, with three observations on each subject, the set-
ting was that of multiple regression. With only one observation on Subject 1, 
the setting is simple regression and relationships are easier to see. 

Although specific results are idiosyncratic to specific combinations of 
variance components and deviations from group means, the general idea of 
ratios in variance components defining the magnitude of shrinkage to esti-
mates of random effects is common to all mixed-effect analyses. Importantly, 
change to random effect estimates due to changes in variance components in 
unbalanced data also influence estimates of fixed effects. 

5.5 Methods of Estimation

5.5.1 Inferential Frameworks

Three general frameworks for inference are frequentist, Bayesian, and 
 likelihood-based. With frequentist inference conclusions are drawn from 
significance tests, or results are expressed in terms of sample-derived con-
fidence intervals. With Bayesian inference results are expressed in terms of 
probability distributions for the parameters being estimated. Likelihood-
based inference arises from the assertion that all the information in samples 
is contained in probability distributions—called likelihood functions. The 
extent to which the evidence supports one parameter value or hypothesis 
against another is therefore equal to the ratio of their likelihoods. From these 
likelihoods (probabilities), confidence intervals and hypothesis tests can be 
constructed.

Obviously, method of inference and method of estimation are linked. 
Subsequent sections in this chapter briefly review common methods of esti-
mation: least squares and generalized estimating equations (GEE), and takes 
a more in-depth look at maximum likelihood-based estimation. 

5.5.2 Least Squares

A standard reference for least squares estimation is Snedecor and 
Cochran (1980). Least squares minimizes (Y−Xβ)’(Y−Xβ), that is, minimizes 
squared deviations. The mechanics of least squares estimation for fixed 
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effects was illustrated in Section 5.3.1. The following section  provides 
additional detail. 

Fisher (1925) introduced the method for estimating variance compo-
nents by equating sum of squares to their expected values. Possibly the 
most important paper in least squares estimation for unbalanced data is 
Henderson (1953). The three methods presented in that paper, later known 
as Henderson’s methods, were the standard estimation methods for linear 
mixed-effect models until fast computers became available.

In simple regression, the method of least squares determines the best fit 
line to the data by minimizing the error sums of squares. The degree to 
which the data points are scattered around the line determines how well 
the model “fits” the data. The more tightly clustered the points are around 
the line, the better the fit to the data. Best fit can be determined for any finite 
linear combination of specified functions and is not limited to regression set-
tings. That is, any number of categorical and continuous independent vari-
ables can be fit via least squares. 

Least squares has been used broadly across many fields of research because 
it is a flexible method that can be applied to simple data structures using 
simple models, or can be adapted to complex situations with complex mod-
els. A simple data structure could have, for example, one observation on the 
outcome variable per subject. More complex data structures arise when the 
outcome variable is measured repeatedly on each subject (or experimental 
unit). Least squares can be adapted to these more complex data structures. 
As illustrated in Sections 5.3.1 and 5.3.2, least squares can be subdivided into 
two categories: ordinary least squares for simple data structures and gener-
alized least squares to accommodate correlated data. 

An important attribute of least squares estimation and the associated fre-
quentist inference is that missing data are only ignorable if arising from a 
missing completely at random (MCAR) mechanism. Important missing data 
concepts are covered in Section III, including the benefits of ignorability. See 
in particular Chapters 12 and 13. For now, it is sufficient to know that meth-
ods such as least squares that require MCAR for ignorability are less well-
suited to longitudinal clinical trial data than methods that require the less 
restrictive assumption of missing at random (MAR). 

5.5.3 Generalized Estimating Equations

A standard reference for generalized estimating equations (GEE) is Liang 
and Zeger (1986). Intuitively, GEE allows for correlation between repeated 
measurements on the same subjects without explicitly defining a model 
for the origin of the dependency. As a consequence, GEE is less sensitive to 
parametric assumptions than maximum likelihood, and is computationally 
more efficient. Some connections can be drawn between the origins of GEE 
and maximum likelihood. However, GEE is a non-likelihood based method, 
and hence frequentist, and similar to least squares. The very restrictive 
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assumption of an MCAR missing data mechanism is required for ignorabily 
of missing data in GEE. 

In GEE, estimates arise as generalizations of both quasi-likelihood and 
generalized linear models from univariate to multivariate outcomes. It is 
a viable approach for conducting inference on parameters that can be 
expressed via the first moments of some underlying multivariate distribu-
tions (e.g., treatment contrast in repeated measures analysis), especially 
in situations when specification of the entire multivariate distribution 
may be challenging. For example, GEE can be useful for analysis of non- 
normally distributed (e.g., binary) correlated data when maximum likeli-
hood methods either do not exist or are hard to implement. See Chapter 10 
for additional details on analyses of categorical data.

The attractiveness of GEE is in that it does not require modeling within-
subject correlation structures. Even if the structure is incorrectly speci-
fied (e.g., assumed to be independent), the point estimates of parameters 
are consistent and the correct standard errors can be computed by using 
the robust sandwich estimator that is based on residuals from the fitted 
model. However, the relaxed distributional assumptions and non-reliance 
on correlation structure comes at the price of generally decreased statisti-
cal efficiency. That is, all else equal, parameter estimates from GEE will 
have greater standard errors than corresponding maximum likelihood 
estimates. 

GEE obtains estimates as solutions of estimating equations that have the 
following form. 
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Here, the summation is over N patients, μi is a vector of expected marginal 
means for the ith subject (i.e., the set of ni visit-wise marginal means μij for 
the ith subject with evaluations at visits j = 1,...,ni) that are expressed in terms 
of linear combination Xij

Tβ  through an appropriate link function. For exam-
ple, when modeling binary data using the logit link, the marginal means 
are probabilities of the event of interest that are related to a linear predictor 
l Xij ij

T= β  via an inverse logit transformation Pr(Yij = 1) = μij(lij) = 1/(1 + exp(−lij)). 
The linear combination lij is the product of row-vector ´Xij

T  in the N × p design 
matrix Xj and the p-dimensional vector of parameters β (e.g., treatment by 
associated with treatment variable, baseline severity score).

The ni × p matrix Di contains partial derivatives of μi with respect to para-
meters β and the ni × ni matrix Vi is essentially a “working model” for the 
covariance of Yi that is decomposed into a so-called working correlation 
matrix R(α ) (where α is the vector of estimated parameters) that is pre- and 



57Mixed-Effects Models Review

post-multiplied by the square root of diagonal matrix Ai with marginal 
variances.

 V A R Ai i i
= φ α( )

1
2

1
2

 

Note that the GEE actually contains p equations. In the simplest case of 
a univariate normal regression, these specialize to p “normal equations” 
that are obtained by differentiating the log-likelihood (or least squares) with 
respect to p parameters in β.

5.5.4 Maximum Likelihood

Maximum likelihood (ML) estimation for normal distribution variance com-
ponent models was considered by Crump (1947). The landmark papers on 
ML estimation include Hartley and Rao (1967), in which the first asymp-
totic results for the maximum likelihood estimators (MLE) were established. 
Restricted maximum likelihood was introduced by Thompson (1962) and 
later extended by Patterson and Thompson (1971). Harville (1977) presented 
a comprehensive review of maximum likelihood and restricted maximum 
likelihood estimation in linear mixed-effects models and is a standard 
reference, along with papers by Laird and Ware (1982), and Jennrich and 
Schluchter (1986).

Loosely speaking, a likelihood function is the probability distribution 
function associated with the parameter(s) being estimated from the observed 
data sample. Parameter values are set such that the observed data sample is 
most likely to be generated from the underlying probability distribution. In 
maximum likelihood estimation, the value of a parameter that maximizes 
the likelihood function is chosen as the estimate for that parameter. For 
example, the appropriate likelihood function for a continuous variable may 
be the normal probability distribution, which includes parameters for the 
mean and variance. A key implication is that parameters for the mean and 
variance need to be estimated. When extending this to repeated measures 
taken in a longitudinal clinical trial, parameters for mean, variance, and 
covariance (correlation) need to be estimated. 

With likelihood-based estimation and inference (as well as with Bayesian 
inference), missing data can be ignored if it arises from either an MCAR or 
MAR mechanism. This is an extremely important advantage for longitudi-
nal clinical trial data analyses over least squares and GEE that require the 
more restrictive assumption of MCAR for ignorability. (See Section III, espe-
cially Chapter 12 and 13, for additional details.)

Use of least squares does not mean the errors (residuals from the model) 
will be small, only that no other estimates will yield smaller errors. 
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And ML does not guarantee the parameter estimates have a high likelihood 
of being the true value, only that there is no other value of the parameter that 
has a greater likelihood, given the data. Under certain conditions, ML and 
least squares yield the same results. 

Restricted maximum likelihood estimates (RMLE) of the variance- 
covariance components are usually preferred to MLE in linear mixed-effects 
models because RMLEs take into account the estimation of the fixed effects 
when calculating the degrees of freedom associated with the variance- 
components estimates, while MLEs do not.

Maximum likelihood and restricted maximum likelihood estimates of G 
and R can be obtained by constructing appropriate objective functions and 
maximizing that function over the unknown parameters. The correspond-
ing log-likelihood functions are as follows: 
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where r = Y − X(X′V−1X)−X′V−1Y and p is the rank of X.
In practice, commercial software packages minimize −2 times these  functions 

by using a ridge-stabilized Newton–Raphson algorithm, which is generally 
 preferred over the expectation-maximum algorithm (Lindstrom and Bates 
1988). One advantage of using the Newton–Raphson algorithm is that the 
 second derivative matrix of the objective function evaluated at the optima (H) is 
 available upon completion. 

The asymptotic theory of maximum likelihood shows that H−1 is an esti-
mate of the asymptotic variance-covariance matrix of the estimated parame-
ters of G and R. Therefore, tests and confidence intervals based on asymptotic 
normality can be obtained. However, these tests can be unreliable in small 
samples, especially for parameters such as variance components that have 
sampling distributions that tend to be skewed to the right (SAS 2013). See 
Verbeke and Molenberghs (2000) for additional details on estimation and 
testing of variance components in likelihood-based models.

5.6 Marginal, Conditional, and Joint Inference

Within each inferential framework/method of estimation, it is also impor-
tant to consider whether marginal, conditional, or joint inference is most rel-
evant for the clinical question at hand. 
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To illustrate the conceptual distinctions between marginal, conditional, 
and joint inference, consider the following example regarding the probabil-
ity of developing a certain disease. Assume that D is a discrete random vari-
able with a value of 1 for subjects with the disease and 0 for those who do not 
have the disease. Further assume that R is a discrete random variable with 
a value of 1 for subjects with known risk factors for the disease and 0 for 
those who do not have risk factors. Further assume that the probabilities of D 
depend on R. That is, P(D = 1) and P(D = 0) vary depending on whether R is 
0 or 1. With R = 1, P(D = 1) is greater than if R = 0. Hypothetical probabilities 
for the example are listed below. 

R = 0 R = 1 Marginal Probability

D = 0 (healthy) 0.70 0.10 0.80
D = 1 (disease) 0.10 0.10 0.20
Total 0.80 0.20 1.0

Finding the probability for specific pairs of outcomes, D and R, requires 
knowledge of the joint probability distribution. An example would be the 
probability of a subject having D = 1 and R = 0. That is, what is the probability 
of having the disease and no risk factors, which in this example is 0.10 (10%). 

An example of marginal inference from these data would be ques-
tions about the probability of D without regard for R. That is, what is the 
probability of having the disease without regard for whether or not risk 
 factors are present? The marginal P(D = 1) can be found by summing the 
joint probabilities for D = 1 across levels of R. In the example, the marginal 
P(D = 1) = 0.10 + 0.10 = 0.20. The marginal P(D = 0) can be found similarly 
by summing across levels of R where D = 0 (0.80 in the example). Thus 
the  marginal probability of having the disease = 20% and the marginal 
 probability of not having the disease = 80%.

An example of conditional inference from these data would be questions 
about the probability of having the disease conditional on having (or not having) 
risk factors. The conditional probability of having disease in subjects with risk 
factors is based on only those subjects with R = 1. Hence, the probability D = 1 
given R = 1 (which can be denoted as P(D = 1| R = 1) = 0.10/(0.10 + 0.10) = 50%. 
Similarly, the probability of having the disease in subjects with no risk factors 
is P (D = 1|R = 0), which is calculated as 0.10/(0.70 + 0.10) = 12.5%. 

None of these three inferential frameworks (joint, marginal, and condi-
tional) is inherently more relevant than the others; each can be the most 
relevant or not relevant depending on the question being addressed. The 
distinction between marginal and conditional inference is relevant in longi-
tudinal trials of medical interventions, but perhaps not as straightforward as 
in the previous simplistic example. 

This topic is most often considered with regard to random effects, such as 
subject. 
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The marginal and conditional means in the linear mixed model  are 
E[Y] = Xβ and E[Y|b] = Xβ + Zb, respectively. Therefore, the marginal and 
conditional residuals are Y – Xβ and Y – Xβ – Zb, respectively. Recall that 
random effects are constrained to have mean = 0. Therefore, in normally 
distributed data with a linear model Xβ = Xβ + Zb. That is, with regard to 
fixed effects contrasts, there is no difference between the marginal and the 
conditional result. However, for data that are not normally distributed, 
this will not be the case.

Another way to conceptualize the distinction is that marginal inference 
involves the estimate of the average response in the population of subjects 
whereas conditional inference involves the estimates of response for the 
average subject (the subject for which b = 0). In normally distributed data, 
the average response and the response of the average subject are identical. 
In nonnormal data, they are not identical. However, the important issues are 
not so much numeric equality or inequality, but rather which estimate is best 
to address the question at hand. 



Section II

Modeling the Observed Data

Given the variety of scenarios that may be encountered in longitudinal 
clinical trials, no universally best model or modeling approach exists. This 
implies that the analysis must be tailored to the situation at hand. To an extent, 
 characteristics of the data are driven by the design of the study. And, an 
appropriate analysis therefore follows logically from the design—and the 
estimand. The analyst must therefore understand how data characteris-
tics and estimands influence choice of analysis. In Section II, each chapter 
addresses a common modeling consideration for the analysis of longitudi-
nal clinical trial data. Chapter 6 discusses various choices for the depen-
dent variable. Chapter 7 covers approaches to modeling mean trends over 
time. Chapter 8 covers common methods to account for correlation between 
repeated measurements. Chapter 9 covers considerations for whether covari-
ates should be included and, if so, how best to include them. Chapter 10 
 covers categorical data. Chapter 11 covers model checking and validation.
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6
Choice of Dependent Variable 
and Statistical Test

6.1 Introduction

A logical place to begin in developing analyses for longitudinal clinical trial 
data is to determine the dependent (i.e., response or outcome) variable and 
upon what basis it will be evaluated. These may seem like obvious deci-
sions dictated by the design of the trial and historical precedent. However, 
a number of subtleties apply and these factors reinforce the need for the iter-
ative study development process detailed in Chapter 2. Specifically, the trial 
design informs the analysis, but analytic consequences also need to inform 
the design.

Of course, the distribution of the outcome variable influences the method 
of analysis. Statistical methods for a wide array of distributions are well 
known. In many longitudinal clinical trials the primary analysis is based 
on a continuously distributed variable. Continuous outcome variables can 
be analyzed as: the actual outcomes collected, change from baseline, percent 
change from baseline, or a dichotomized version of the outcome indicating 
whether or not some relevant threshold in the actual score, change, or per-
cent change is achieved.

In addition, the statistical test used to evaluate these various versions 
of the outcome variable could be based on a contrast at a single, landmark 
time point, or based on multiple time points, such as a slopes analysis, 
treatment main effect or treatment-by-time interaction. Convention may 
guide the analyst to choices for the primary analysis. Nevertheless, con-
sequences of the conventional choice should be understood. Secondary 
analyses of alternative choices or an alternative choice may be needed as 
the primary analysis.



64 Analyzing Longitudinal Clinical Trial Data

6.2  Statistical Test—Cross-Sectional and 
Longitudinal Contrasts

In clinical trials, it is common to base the primary analysis on a contrast at a 
landmark time point. Such contrasts are often referred to as cross-sectional 
contrasts because the focus is on a “cross section in time.” However, other 
“longitudinal contrasts” that involve multiple time points, for example, the 
entire longitudinal profile, are often worth considering for the primary anal-
ysis or secondary analysis. 

An important distinction must be made for cross-sectional contrasts. 
Historically, cross-sectional contrasts have often been based upon just the 
data at the landmark time point. However, it is possible to construct the same 
cross-sectional contrast from the longitudinal sequence of data. Single-point-
in-time analyses were likely motivated by simplicity and ease of  computation 
in an era when computational efficiency was a legitimate concern. However, 
with advancements in hardware and software, such compromises are no 
longer needed. 

Incorporating all repeated measures from a subject into an analysis rather 
than including just a single outcome per subject opens many possibilities 
for analyses. Perhaps the most important benefit from longitudinal analyses, 
regardless of whether or not focus is on a landmark time point, is in account-
ing for missing data. With repeated measurements, the correlation between 
outcomes within subjects can be exploited under certain conditions to pro-
vide safeguards against potential bias from missing data. Missing data is a 
nuanced and detailed discussion that is covered in detail in Section III of this 
book. The important point here is that longitudinal data require a longitu-
dinal analysis, even when focus is on a single point in time. Therefore, the 
emphasis throughout this book is on longitudinal analysis, with illustrations 
of how contrasts can be constructed if focus is on a single point in time.

The following examples in Figures 6.1 through 6.3 illustrate some of the key 
considerations in choosing between test statistics that involve a single land-
mark time point versus test statistics that include data from all time points.

Figure 6.1 illustrates a significant treatment-by-time interaction wherein 
the difference between treatments varies over time. The two groups are 
equal at endpoint, but the effect evolved more slowly in one group. Such a 
scenario reinforces the need to understand the longitudinal profiles that lead 
to the endpoint results. 

Figure 6.2 illustrates a significant treatment main effect, with a rapidly 
evolving treatment effect that is sustained until endpoint. The consistency 
of the time trends suggests the treatment main effect, which includes data 
from all time points, could be a useful primary analysis. The treatment main 
effect is in essence an average effect over all visits and can be interpreted 
similarly to an area under the curve analysis.
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Figure 6.3 illustrates a significant treatment-by-time interaction where the 
treatment effect increases over time. The treatment contrast at endpoint is 
usually of particular interest in such scenarios. However, in certain situa-
tions similar to this example, focus may be on the rate of change over time, 
that is, time is fit as a continuous effect (see Chapter 8 for further examples).

In situations with more than two treatment arms, additional options for 
primary test statistics exist. For example, a global F test might be used at a 
landmark time point to assess if any differences exist between treatments 
at that visit. Or, if treatment main effects are relevant, a global F test for 
the treatment main effect can be used that includes data from all visits in 
all arms.

0
25

20

15

10

5

0

1 2 3 4 5 6

FIGURE 6.1
Illustration of a significant treatment-by-time interaction with a transitory benefit in one arm.
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FIGURE 6.2
Illustration of a significant treatment main effect.
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6.3  Form of Dependent Variable (Actual 
Value, Change, or Percent Change)

Clinical relevance is an important factor in the choice of how a continuous 
outcome is expressed. In some scenarios, the outcomes are well- understood 
at face value and the actual values may be favored for the dependent variable. 
Consider blood pressure, a well-understood, objective measure for which the 
actual outcomes are meaningful and could be used in the primary analysis. 
However, medical interventions are hoped to elicit change in a condition. 
Therefore, even if the actual outcome is meaningful and well-understood, 
change from baseline may be the more intuitive and preferred outcome. 

For other outcomes, the actual values may not be readily meaningful or 
widely understood. Take, for example, the psoriasis area and severity index 
(PASI) (Langley et al. 2004). The PASI combines the amount of skin covered 
by the psoriatic plaques (area) and the severity (thickness, redness, etc.) of the 
plaques into a single number that can range from 0 to 72. Experienced research-
ers understand PASI scores, but the broader dermatology community may lack 
context and find such values difficult to interpret. Similarly, if the actual values 
have limited meaning, then change scores may also be difficult to interpret. 
Therefore, psoriasis clinical trials typically use percent change from baseline 
because relative changes are easier for broader audiences to appreciate. 

However, the analytic consequences of the choices need to be considered. 
Perhaps foremost among these analytic consequences is the distribution of 
the dependent variable. To illustrate key points, consider the histograms of 
all post-baseline values for actual HAMD17 total scores, change from base-
line, and percent change from baseline obtained from the small complete 
data set that are depicted in Figures 6.4 through 6.6.
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FIGURE 6.3
Illustration of a significant treatment-by-time interaction with an increasing treatment differ-
ence over time.
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FIGURE 6.4
Distribution of actual scores in the small complete data set.
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FIGURE 6.5
Distribution of percent changes from baseline in the small complete data set.
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The actual values and the percent changes have truncated distributions, 
bounded by 0 for actual values and −100% for percent change. Actual scores 
and percent changes also have skewed distributions, with actual scores hav-
ing an extreme outlier value. In contrast, changes from baseline are not trun-
cated and are more symmetrically distributed. Of course, this is only one 
example and situations vary. However, whenever an appreciable portion of 
subjects have a score of 0, and accordingly −100 percent change, truncation 
and its impact should be considered. 

To that end, nonnormality of the outcome variable is not the key issue. 
Normality of the residuals is the key distributional assumption. However, 
residuals are more likely to be nonnormal as the distribution of the outcome 
variable departs further from normality. As will be seen in Chapter 9, under 
certain formulations of a longitudinal analysis (including baseline score 
for the outcome variable as a covariate) treatment contrasts based on actual 
change and change from baseline will be identical.

Considerations for percent change are particularly important when there 
is no minimum requirement for baseline severity, as would be the case for 
many secondary outcomes. To illustrate, consider the hypothetical data in 
Table 6.1 for a 100 mm visual analog scale for pain. Subjects rate pain by 
marking a spot in the line describing their pain (current pain, pain during 
the assessment interval, etc.). Zero denotes no pain and 100 denotes the worst 
possible pain.
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FIGURE 6.6
Distribution of changes from baseline in the small complete data set.
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Based on the unadjusted (raw) means, mean endpoint scores are equal 
for Treatments 1 and 2 (20 for each treatment). The mean change from base-
line is nearly threefold greater for Treatment 2 (30 versus −10.5). The mean 
percent change from baseline for Treatment 1 is strongly influenced by 
Subject 2, who had minimal pain at baseline and a small increase at end-
point. The low baseline severity results in an extreme outlier value for 
percent change. While this hypothetical example is purposefully extreme, 
it illustrates how percent change can create outlier values and nonnor-
mal distributions, especially when analyzing a variable with no minimum 
requirement for baseline severity.

In situations where percent change is customary, an alternative may be to 
conduct the analyses based on changes from baseline and then convert the 
mean changes into percent mean change, rather than using percent change as 
the dependent variable to assess mean percent change. In the example above, 
the percent mean changes for Treatments 1 and 2 are approximately −34% 
(mean change of −10.5 divided by baseline mean of 30.5) and −60% (mean 
change of −30 divided by baseline mean of 50), respectively.

Dichotomization of continuous outcomes into binary outcomes of whether 
or not a certain threshold of response was met causes a loss of information. 
To illustrate, consider the hypothetical data in Table 6.2. Assume that a 50% 
improvement from baseline is used as the cut off to define responder status.

TABLE 6.1

Hypothetical Data Illustrating Actual Outcomes, Change from 
Baseline, and Percent Change from Baseline

Subject Treatment Baseline Endpoint Change
Percent 
Change

1 1 60 30 −30 −50%
2 1 1 10 9 900%
3 2 20 10 −10 −50%
4 2 80 30 −50 −62%
Mean 1 20 −10.5 425%
Mean 2 20 −30 −56%

TABLE 6.2

Hypothetical Data Illustrating Dichotomization of a 
Continuous Endpoint

Subject Treatment Percent Change Response Status

1 1 –70% Yes
2 1 +20% No
3 2 –49% No
4 2 –50% Yes
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The percent changes for Subjects 2 and 3 are very different (20% worsening 
vs. 49% improvement), but both are classified as nonresponders. The percent 
changes for Subjects 3 and 4 are essentially identical, but Subject 3 is a non-
responder and Subject 4 is a responder. Both treatment groups have a 50% 
responder rate, whereas the mean percent change is approximately twofold 
greater for Treatment 2.

In situations where responder rate is a common outcome, it may be useful 
to consider some form of mean change analysis to assess if a treatment signal 
exists and then use the dichotomized responder status to describe the clini-
cal relevance of a signal, if one is found based on the mean change analysis. 

6.4 Summary

Cross-sectional contrasts have often been based upon just the data at the 
landmark time point. However, it is possible to construct the same cross-
sectional contrast from the longitudinal sequence of data. Using longitudi-
nal analyses rather than cross-sectional analyses opens many possibilities 
for tailoring the analysis to the situation at hand. Actual change from base-
line will usually have better distributional properties than percent changes, 
especially when there is no baseline minimum requirement for the depen-
dent variable. 
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7
Modeling Covariance (Correlation)

7.1 Introduction

Clinical trials often assess subjects repeatedly over time. Correlations 
between repeated measurements within the same subjects often arise from 
between-subject variability and adjacency in time or location of evaluations. 
Therefore, independence of observations cannot be assumed in longitudinal 
trials. Failure to properly account for the association between observations 
can result in biased point estimates and standard errors that do not properly 
reflect the uncertainty in the data.

Between-subject variability (i.e., heterogeneity between individual pro-
files) may arise from inherent, subject-specific factors, such as genotype. 
Additional association may arise from unaccounted for fixed effects, such as 
age or gender, which like genotype influence every observation and there-
fore create association between repeated observations. Further association 
may arise due to time course (i.e., serial) correlation, which exists when 
observations closer to each other in time (or location) are more similar than 
observations further apart in time (or location).

Correlation between subjects is generally less of a concern in longitu-
dinal clinical trials than correlations within subjects. Sources of corre-
lation between subjects may include genetic or environmental factors. 
Generally, the frequency of relatives in a clinical trial is so low that 
genetic correlation can be ignored. The most common environmental 
source of correlation is that observations on subjects at the same investi-
gative site (location) may be more similar to each other than to the sample 
as a whole.

Random measurement errors contribute to variability. In the longi-
tudinal setting it is particularly important to consider the potential for 
error variance to increase or decrease over time (Mallinckrodt et al. 
2003). Measurement errors tend to weaken the association between the 
measurements.
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Longitudinal analyses can account for the correlation between obser-
vations as functions of the random effects, the residual effects, or both. 
Appropriate means of accounting for correlations between observations 
begins with considering the sources of covariation. The relative importance 
of the various sources of (co)variance can be useful in guiding modeling 
choices for specific circumstances.

For example, in analyses of objective physical measures such as blood 
pressure or laboratory values, subject-specific factors may have the great-
est contribution to within-subject correlations. Fixed effects that are not 
included in the analysis (e.g., subject’s age or gender) may also give rise 
to a compound symmetric error structure because, like random effects, 
these fixed effects may have the same effect on each observation. Detailed 
descriptions for a wide array of correlation structures are available 
(SAS 2013).

In analyses of subjective ratings, such as the Hamilton Depression 
Rating Scale (Hamilton 1960), serial correlation that decays with increas-
ing distance in time (such as in an autoregressive structure) may also be 
important.

In clinical trials where the focus is primarily on the fixed effects, it 
may be equally appropriate, and more straightforward, to omit explicit 
modeling of the subject-specific effects and model them as part of the 
within- subject error (residual) correlation structure. In such cases, the 
subject-specific effects and serial correlations combine, with or without 
changes in error variance over time, to yield what is often an unstructured 
correlation pattern for the within-subject (residual) errors.

In certain settings the number of parameters that must be estimated for 
an unstructured covariance matrix can be prohibitive. However, many 
clinical trials have observations taken on the primary outcome measure 
at a relatively small number of time points. These measurement times 
are typically fixed, with narrow intervals. Thus measurements may be 
taken perhaps once per week, with the Week 1 observation mandated to 
take place between days 5 and 9, the Week 2 observation between days 
12 and 16, and so on.

Therefore, unstructured modeling of residual correlation is a popular 
approach in clinical trials, especially confirmatory trials, because fewer 
restrictions/assumptions are imposed on the pattern of correlations over 
time. However, this should not be confused with an assumption-free 
approach. For example, unstructured modeling of within-subject correla-
tion may still require assumptions, such as the same correlation structure 
applies to each treatment group. Of course, this restriction can be relaxed 
by specifying separate structures for each treatment group. However, 
separate structures for each group may trigger the issue of having to esti-
mate a prohibitively large number of parameters relative to the number of 
subjects.
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7.2 Assessing Model Fit

Given the importance of appropriately modeling the covariance between 
repeated measures, and the variety of approaches that can be used, it is 
important to assess the fit of a prespecified model and to compare the fit of 
alternative models.

With likelihood-based estimation the objective function can be used to 
assess model fit and to compare the fit of candidate models. If one model is a 
submodel of another, likelihood ratio tests can be used to assess if the more 
general model provides superior fit. The likelihood ratio test is constructed 
by computing −2 times the difference between the log likelihoods of the can-
didate models. This statistic is then compared to the χ2 distribution with 
degrees of freedom equal to the difference in the number of parameters for 
the two models. 

For models that are not submodels of each other, various information crite-
ria can be used to determine which model provides the best fit. The Akaike 
(AIC) and Bayesian (BIC) information criteria are two common approaches 
(Hurvich and Tsai 1989). These criteria are essentially log likelihood val-
ues adjusted (penalized) for the number of parameters estimated, and can 
thus be used to compare different models. The criteria are set up such that 
the model with the smaller value is preferred.

7.3 Modeling Covariance as a Function of Random Effects

Two common means of modeling within-subject correlation include fitting 
a random intercept or the random coefficient regression approach that fits a 
random intercept and random effect(s) for time. Random coefficient regres-
sion is covered in Section 8.3. Code fragments for fitting a random intercept 
model in SAS and R for the small complete data set are listed in Section 7.8 
(Code Fragment 7.1). Results from fitting a random intercept model are sum-
marized in Table 7.1. 

The between-subject variance (random intercept) was 15.08 and the residual 
variance was 8.11, resulting in within-subject correlations of approximately 
0.65 [15.08/(15.08 + 8.11)]. This formulation of the mixed model assumes con-
stant variance over time. Therefore, the within-treatment standard errors and 
the standard errors of the contrasts between treatments do not change over 
time. At Time 3 the between-treatment contrast was 3.39 and the SE was 1.36.

The correlation between observations on different subjects at the same 
investigative site could be modeled by adding a random intercept for site to 
the model above. 
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7.4 Modeling Covariance as a Function of Residual Effects

Subject-specific effects and serial correlation or other sources of correla-
tion can be modeled simultaneously. However, if the subject-specific effects 
are not of direct interest, a simpler formulation of the model can be imple-
mented in which the random effects are not explicitly modeled, but rather 
are included as part of the error correlation matrix, leading to what could be 
described as a multivariate normal model. Under certain model specifica-
tions discussed in Section 7.5, fitting versus not fitting a random intercept in 
addition to fitting a residual correlation structure has no effect on treatment 
contrasts. 

Modeling the random effects as part of the within-subject error correla-
tion structure is the feature that distinguishes the so-called MMRM (mixed 
model for repeated measures) analysis from other implementations of 
mixed-effects models (Mallinckrodt 2013). 

Many residual covariance structures can be implemented for analyses. 
Some example structures are described below and subsequently used in 
analyses of the small example data set. The compound symmetric (CS) 
structure has constant variance and constant covariance across all assess-
ments. The heterogeneous compound symmetric (CSH) structure has a 

TABLE 7.1

Results from Fitting a Random Intercept Model to the 
Small Complete Data Set 

Visit-wise Least Square Means

Treatment Time LSMEAN Standard Error

1 1 −4.120 0.9641
1 2 −6.70 0.9641
1 3 −9.86 0.9641
2 1 −5.31 0.9641
2 2 −8.69 0.9641
2 3 −13.25 0.9641

Visit-wise Contrasts

Time
Difference 
LSMEAN

Standard 
Error P

1 1.19 1.36 0.3860
2 1.99 1.36 0.1487
3 3.39 1.36 0.0151
Random intercept variance = 15.08
Residual variance = 8.11
−2 res log likelihood = 823.2
AIC = 827.2
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different variance for each assessment time and it uses the square roots of 
these parameters in the off-diagonal entries. The heterogeneous Toeplitz 
(TOEPH) structure has a different variance for each assessment time and 
uses the same correlation value whenever the degree of adjacency is the 
same (correlation between Time 1 and 2 is the same as between Times 
2 and 3). An unstructured covariance matrix is completely unstructured, 
with different variances at each visit and different covariances for each 
combination of visits. 

Each of the selected structures is described in further detail in Figure 7.1. 
Those descriptions use four assessment times even though the example data 
set has only three assessment times. Adding a fourth assessment time makes 
it easier to appreciate how the structures differ.

Code fragments for fitting the selected residual covariance structures in 
SAS and R for the small complete data set are listed in Section 7.8 (Code 
Fragment 7.2). Estimated covariance matrices from fitting these structures 
are summarized in Table 7.2. 

With a compound symmetric structure the within-subject covariance 
is equal to the between-subject variance when fitting a random intercept 
model and the total variance is equal for the two models. When adding 
heterogeneous variance over time to the compound symmetric structure 
variance estimates increase over time, especially at Time 3. Compound 
symmetric models fit a single correlation parameter for all combinations 
of visits. Therefore, when variance increases over time the covariance 
must increase for observations further apart in time to maintain equal 
correlation. 

Covariance estimates from the unstructured model and the TOEPH model 
were similar, with variances increasing over time and covariance decreasing 
for observations further apart in time. Given only three assessment times, 
the number of parameters estimated for the various structures did not differ 
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FIGURE 7.1
Description of selected covariance structures for data with four assessment times: (a)  compound 
symmetry, (b) heterogeneous CS, (c) heterogeneous Toeplitz, and (d) unstructured.
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as much as would be the case with more assessment times. Therefore, results 
from the different covariance structures were more similar than would be the 
case with more assessment times.

Treatment contrasts, standard errors, P values and model fit criteria for 
fitting selected residual correlation structures are summarized in Table 7.3. 

TABLE 7.3 

Treatment Contrasts, Standard Errors, P Values, and Model Fit Criteria 
from Selected Residual Correlations Structures 

Structure AIC Time 3 Contrast Standard Error P

CSH 828 3.391 1.514 0.0299
TOEPH 820 3.391 1.490 0.0272
UN 823 3.391 1.489 0.0274
UN GROUP = TRT 831 3.381 1.490 0.0279

Note: CSH = compound symmetric with heterogeneous variance, TOEPH = 
toeplitz with heterogeneous variance, UN = unstructured, GROUP = TRT 
indicates separate structures were fit for each treatment group.

TABLE 7.2 

Residual (Co)variances and Correlations from Selected Models 

Covariances

Time 1 2 3 1 2 3

Compound Symmetric (CS) CS with Heterogeneous Variance
1 23.19 15.08 15.08 21.28 13.62 16.24
2 15.08 23.19 15.08 13.62 20.08 15.77
3 15.08 15.08 23.19 16.24 15.77 28.54

Unstructured Toeplitz with Heterogeneous Variance
1 20.61 15.30 12.28 20.59 15.28 12.28
2 15.30 21.36 17.67 15.28 21.36 17.70
3 12.28 17.67 27.61 12.28 17.70 27.64

Correlations

Time 1 2 3 1 2 3

Compound Symmetric (CS) CS with Heterogeneous Variance
1 1.00 0.65 0.65 1.00 0.66 0.66
2 0.65 1.00 0.65 0.66 1.00 0.66
3 0.65 0.65 1.00 0.66 0.66 1.00

Unstructured Toeplitz with Heterogeneous Variance
1 1.00 0.73 0.51 1.00 0.73 0.51
2 0.73 1.00 0.72 0.73 1.00 0.73
3 0.51 0.72 1.00 0.51 0.73 1.00
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The treatment contrasts from models that fit a single covariance structure 
for all subjects were identical. This would not be expected to happen if some 
data were missing or the data were otherwise unbalanced. Fitting separate 
structures by treatment had a small effect on the contrast. Standard errors 
and P values varied slightly across the various models. The best fit came 
from the TOEPH model. Although the unstructured covariance model 
yielded nearly identical results to the TOEPH model, the TOEPH yielded the 
best fit based on Akaike’s information criteria because it estimated fewer 
parameters. 

A banded correlation structure may be useful in scenarios where fitting an 
unstructured correlation matrix is desired but problematic due to the number 
of parameters to be estimated. In a banded unstructured covariance matrix, 
not all covariance parameters are estimated. Instead, only those covariance 
terms within the specified degree of adjacency (number of bands) are fit and 
all other covariance terms are set to zero. For example, in a study with 10 
post-baseline visits, if an unstructured matrix with 3 bands is fit, then for any 
time point only those assessments within 3 visits of the reference visit are fit, 
with all other covariances assumed to = 0. With 10 post-baseline assessments, 
a fully unstructured approach requires estimation of 10(10 + 1)/2 = 55 vari-
ance and covariance parameters. Banding can therefore dramatically reduce 
the number of parameters to be fit, but imposes restrictions on how rapidly 
the correlations decay. 

A vast array of residual correlation structures may be fit, far too many to 
fully consider here. See, for example, the SAS PROC Mixed documentation 
(SAS 2013) for full descriptions of the structures that can be fit within that 
software. While choice of covariance structure is in general an important 
issue, for clinical trials an unstructured approach, either overall or separate 
structures for each treatment, is generally preferred and almost always fea-
sible given the number of observations relative to the number of parameters 
to be estimated.

7.5   Modeling Covariance as a Function of 
Random and Residual Effects

Code fragments for fitting a random intercept and residual correlations in 
SAS and R for the small complete data set are listed in Section 7.8 (Code 
Fragment 7.3).

Results from fitting a random intercept and an unstructured residual 
covariance structure is summarized below. Standard errors, treatment con-
trasts, and P values were identical for models with unstructured  residual 
covariance structures that fit and did not fit a random intercept for subject. 
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In actual practice, a model with unstructured covariance and random effects 
should not be fit because this results in overspecified models. Specifically, if 
an unstructured covariance is fit, there is nothing left for random effects to 
explain about the within-subject correlations. 

An unstructured covariance was used here in conjunction with a random 
intercept to illustrate the very point that random effects can be accounted 
for via residual within-subject correlations and that there is nothing left 
in addition to be explained by the random intercept. Note that the model 
fit in SAS as specified in code fragment 7.3 yields the following warning: 
“NOTE: Convergence criteria met but final hessian is not positive definite.” 
Results from fitting versus not fitting a random intercept will not be identical 
if a residual structure other than unstructured is fit, but usually results are 
similar.

Even when interest centers on the fixed effects, it is still useful to under-
stand the random effects. Variance and covariance parameters from the 
model fitting a random intercept and an unstructured residual covariance 
structure are summarized in Table 7.4. Adding the random intercept variance 
to each element of the residual covariance matrix in Table 7.4 reproduces 
the unstructured covariance matrix in Table 7.3 that was estimated from the 
model that did not fit the random intercept. The random intercept accounts 
for most of the total variance at Time 1 and Time 2, and over half the total 
variance at Time 3. The random intercept accounts for virtually all of the 
within-subject covariance. 

As further noted in Chapter 8, a variety of means can be used to model 
 correlations as a function of the random effects, and as noted above, many 
possibilities exist for modeling correlations as a function of the residual 
effects. In principle, most of the approaches can be combined in order to 
model correlations as functions of random and residual effects. However, 
model complexity should be considered and it is seldom necessary to fit 
both a complex random effects and residual effects modeling of correlation; 
 usually, at least one of the two will involve a simple structure and require 
only one or a few parameters to be estimated. 

TABLE 7.4

Variance and Covariance Parameters from 
the Model Fitting a Random Intercept and an 
Unstructured Residual Covariance Structure

Intercept Variance 16.06

Residual Covariance

Time 1 2 3

1 4.56 −0.75 −3.77
2 −0.75 5.30 1.61
3 −3.78 1.61 11.56
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7.6 Modeling Separate Covariance Structures for Groups

In Section 7.3, results from separate residual correlation structures by treat-
ment group were included. In this example, there was little difference in 
results from fitting separate structures by treatment versus a single, com-
mon structure for both treatments. However, in many realistic scenarios it is 
necessary to at least consider the possibility that correlation structures differ 
for certain groups of patients. In principle, this is an extension of a t-test with 
heterogeneous variance to the repeated measures setting.

Code fragments for fitting separate random intercepts (Code Fragment 7.4) 
and separate residual correlations (Code Fragment 7.5) by treatment group 
in SAS and R for the small complete data set are listed in Section 7.8. Results 
in Table 7.3 showed that in these examples, fitting separate residual correla-
tion structures by treatment had little effect on results. However, in other 
scenarios, especially those with unbalanced data and/or missing data, 
choice of correlation structure is likely to have a greater impact. Therefore, 
consideration of separate structures for groups is important. Separate cor-
relation structures based on demographic or illness characteristics can also 
be considered.

7.7 Study Design Considerations

Although understanding the relative magnitude of, for example, a ran-
dom intercept variance and residual (co)variances is not necessary to 
interpret fixed effects results, the variance components have implica-
tions for study design and power. Refer to the examples in Section 5.4 
where given a fixed total variance, the ratio of between-subject variance 
to within-subject variance influenced standard errors, with the direction 
(increase or decrease) of effect varying depending on what parameter was 
being estimated.

Therefore, in powering and designing studies, it is not sufficient to con-
sider only the total variance, rather the between-subject variance and 
within-subject variance both need to be considered. Historical data can be 
mined to determine plausible variances for the study under development. 
Simulations can be used to assess how differing combinations of between- 
and within-subject variance influence power for specific parameters.
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7.8 Code Fragments

CODE FRAGMENT 7.1 SAS and R Code for 
Fitting a Random Intercept Model

SAS code

PROC MIXED DATA=ONE;
CLASS SUBJECT TRT TIME;
MO DEL CHANGE = BASVAL TRT TIME BASVAL*TIME TRT*TIME / 

DDFM=KR; 
RANDOM INT / SUBJECT=SUBJECT*;
LSMEANS TRT*TIME/DIFFS;

RUN;

R code†

# using lme function from nlme package
require(nlme)

# setting the time and treatment variables as factors
#  (corresponds to the use of CLASS statement in SAS 

procedures 
#  Note: unlike SAS, R is case-sensitive and variable names
# should be written exactly 
# as they are imported in R data frame from a csv file
complete$TIME <-as.factor(complete$TIME)
complete$trt <-as.factor(complete$trt)

# specifying random intercept model in nlme
fi tmle<-lme(change ~ basval +trt+ TIME + basval*TIME+ 

trt*TIME, data = complete, random = ~ 1 |subject)

# displaying model fit summary
summary(fitmle)

#displaying variance components
VarCorr(fitmle)

#  evaluating treatment least square means and contrast at 
specific visit

require(contrast)

* In the data set, the patient identification variable is named “subject.” If that variable were 
named ID, then the statement would read RANDOM INT / SUBJECT=ID;

† Obtaining P-values using the Kenward–Roger approximation in R to match results from SAS 
requires first fitting a random effects model using the lme4 package and then computing KR 
degrees of freedom using another package (pbkrtest).
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# least squares means
co ntrast(fitmle ,a = list(trt = "1", basval= 

mean(complete$basval), TIME = "3"),
 type = "individual")
co ntrast(fitmle ,a = list(trt = "2", basval= 

mean(complete$basval), TIME = "3"),
 type = "individual")

co ntrast(fitmle ,a = list(trt = "1", basval= 
mean(complete$basval), TIME = "3"),

b  = list(trt = "2", basval= 
mean(complete$basval), TIME = "3"),

 type = "individual")

# Co mputing p-value based on KR df can be done using lme4 
and pbkrtest packages.

require(lme4)
require(pbkrtest)

#  setting the reference (base) level for time and treatment 
variables as the last level 

contrasts(complete$TIME) <- contr.treatment(3, base = 3)
contrasts(complete$trt) <- contr.treatment(2, base = 2)

#  runs a random effect model using lmer procedure from lme4 
package 

lm erfit<-lmer(change ~ basval +trt+ TIME + basval*TIME+ 
trt*TIME+(1|subject), data = complete, REML = TRUE)

sumlmer<-summary(lmerfit)

# displays estimated variance components
sumlmer$varcor

#  displays estimated coefficients; since we set reference 
levels for trt and time at the last visit the coefficient 
for variable trt estimates treatment effect at the last 
visit.

coefs<-data.frame(coef(sumlmer))
coefs

#  obtaining Kenward-Roger degrees of freedom for treatment 
contrast at time 3 using pbkrtest package

trt.df.KR <-get_Lb_ddf(lmerfit, c(0,0,1,0,0,0,0,0,0))
trt.df.KR

#  computing p-value from t-distribution with KR degrees of 
freedom

tr t.p.KR <- round(2 * (1 - pt(abs(coefs["trt1","t.value"]), 
trt.df.KR)),5)

tr t.p.KR.
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CODE FRAGMENT 7.2 SAS and R Code 
for Fitting Residual Correlations

SAS code

PROC MIXED DATA=ONE;
CLASS SUBJECT TRT TIME;
MO DEL CHANGE = BASVAL TRT TIME BASVAL*TIME TRT*TIME / 

DDFM=KR; 
REPEATED TIME / SUBJECT=SUBJECT TYPE =XX;* 
LSMEANS TRT*TIME/DIFFS;

RUN;

R code

require(nlme)

fi tmodel <- gls(change ~ basval +trt+ TIME + basval*TIME+ 
trt*TIME, data = complete, 

 weights = varFunc(form= ~ 1 | TIME), 
 correlation= corStruct(form=~ 1| subject))

Notes

corStruct is specific error correlation structure, 
e.g. corAR1, corCompSymm, corSymm (see R help for 
corClasses{nlme}), specifying weights via varFunc 
allows for various error covariance structures, for 
example, combining varFunc =varIdent with 
correlation = corCompSymm fits a model with 
heterogeneous compound symmetry (see help for varFunc{nlme}

To evaluate treatment contrasts at time x, one can use the 
contrast function from the contrast package as shown in 
code fragment 7.3.

CODE FRAGMENT 7.3 SAS and R Code for Fitting 
a Random Intercept and Residual Correlations 

SAS code

PROC MIXED DATA=ONE;
CLASS SUBJECT TRT TIME;
MO DEL CHANGE = BASVAL TRT TIME BASVAL*TIME TRT*TIME / 

DDFM=KR; 

* TYPE = XX indicates entries for this option determine the correlation structure that is fit, 
e.g., UN, AR(1), ARH(1)
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RANDOM INT / SUBJECT=SUBJECT;
REPEATED TIME / SUBJECT=SUBJECT TYPE =XX;
LSMEANS TRT*TIME/DIFFS;
ODS OUTPUT DIFFS=_DIFFS (where=(TIME= _TIME)) 
LSMEANS=_LSMEANS;

RUN;

Type = XX indicates entries for this 

R code

fi tLME.erun.rint <- lme(change ~ basval +trt+ TIME + 
basval*TIME+ trt*TIME, data = complete, random = ~ 1 
|subject, weights = varIdent(form= ~ 1 | TIME),

correlation=corSymm(form=~ 1| subject))

summary(fitLME.erun.rint)

#  treatment contrasts can be evaluated using the contrast 
package (see Code Fragment 7.5)

CODE FRAGMENT 7.4 SAS Code for Fitting 
Separate Random Intercepts by Treatment

ODS LISTING CLOSE; 
PROC MIXED DATA=ONE;
CLASS SUBJECT TRT TIME;
MO DEL CHANGE=BASVAL TRT TIME BASVAL*TIME TRT*TIME / 

DDFM=KR; 
RANDOM INT / SUBJECT=SUBJECT GROUP=TRT G GCORR; 
LSMEANS TRT*TIME/DIFFS;
ODS OUTPUT DIFFS=_DIFFS LSMEANS=_LSMEANS G=_G; 

RUN;

CODE FRAGMENT 7.5 SAS Code for Fitting Separate 
Residual Correlation Structures by Treatment

PROC MIXED DATA=ONE
CLASS SUBJECT TRT TIME;
MO DEL CHANGE =BASVAL TRT TIME BASVAL*TIME TRT*TIME / 

DDFM=KR; 
REPEATED TIME / SUBJECT=SUBJECT TYPE=UN Group=TRT; 
LSMEANS TRT*TIME/DIFFS;
OD S OUTPUT DIFFS=_DIFFS LSMEANS=_LSMEANS R=_R 

RCORR=_RCORR; 
RUN;
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7.9 Summary

The association between repeated measurements on the same subjects can 
be modeled as a function of the random effects, the residual effects, or both. 
No approach is universally better than another. The analysis must be tai-
lored to the situation at hand.

In clinical trials, the random effects are seldom of direct interest and the 
number of assessment times relative to the number of subjects is often fairly 
small. Such situations are amenable to unstructured modeling of within-
subject covariance (residual errors). Unstructured modeling places few 
restrictions (assumptions) on the model and is often a preferred modeling 
approach, especially in large, confirmatory trials.

The number of parameters for unstructured modeling of correlations is 
equal to n(n + 1)/2, where n is the number of assessment times. However, it 
is unlikely that the number of covariance parameters to be estimated is pro-
hibitively large in clinical trial settings unless separate unstructured matri-
ces are fit for multiple groups (e.g., treatment arms) within the same data set.

Model fitting criteria can be used to pick the best fitting model after data 
become available. Alternatively, an unstructured (or other appropriate) 
approach can be prespecified and alternative structures tested for better fit.
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8
Modeling Means Over Time

8.1 Introduction 

In longitudinal clinical trials, means can vary over time due to, among other 
things, study effects and the natural evolution of the disease. Even when 
focus is on a single landmark time point (e.g., endpoint visit), properly under-
standing and modeling the time trends is important.

In mixed-effects models, time can be modeled in either a structured or 
unstructured manner. In unstructured modeling of time, the time variable 
is considered a categorical (i.e., class) effect. The fixed effect solutions in 
such a mixed model represent the unique effects of each assessment time 
and have t-1 degrees of freedom for t time points. In structured model-
ing of time, the time variable is treated as a continuous independent vari-
able (covariate) as is typically done in regression and covariate analyses. 
Therefore, structured models for time can use fewer degrees of freedom 
and be more powerful than unstructured approaches, provided that the 
functional form of the time trend is correctly specified. In structured 
approaches the time variable can be considered strictly a fixed effect, strictly 
a random effect or have both fixed and random components. Models with 
time as a random effect are commonly referred to as random coefficients 
regression models (SAS 2013). 

Although the longitudinal pattern of treatment effects is usually of inter-
est, the functional form of the mean responses over time may be difficult 
to anticipate. In particular, linear time trends may not adequately describe 
the mean responses. Nonlinear trends may arise from inherent character-
istics of the particular disease and the drug under study, and/or from trial 
design features. For example, if titration dosing is used with initial dos-
ing at a subtherapeutic level to reduce adverse events, there may be a lag 
period with little or no improvement. Conversely, if a drug has rapid onset 
of a fully therapeutic effect, the beneficial effects may increase rapidly across 
early assessments and then level off thereafter. In such cases, parsimonious 
approaches to modeling means over time may lead to inaccurate results and 
more general unstructured models may be preferred (Mallinckrodt et  al. 
2003). Therefore, in many scenarios, an unstructured modeling of means 
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over assessment times requires fewer assumptions, does not require estima-
tion of an inordinate number of parameters, and can be depended upon to 
yield a useful result (Mallinckrodt et al. 2003).

Figure 8.1 illustrates linear time trends for means superimposed on top of 
unstructured time trends. In this example, the treatment group differences 
at the endpoint (Time 8) visit appear relatively equal for the unstructured 
and linear approaches. However, the linear model underestimates within-
group changes at early visits and overestimates within-group changes at 
later visits.

Figure 8.2 illustrates the same unstructured time trends for treatment 
means with linear plus quadratic trends for means by treatment superim-
posed. The two models yield similar within-group changes and between-
group contrasts at each time point.
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FIGURE 8.1
Unstructured modeling of time compared with linear trends.
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FIGURE 8.2
Unstructured modeling of time compared with linear plus quadratic trends.
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Figure 8.3 illustrates a scenario where one treatment has a rapid and 
sustained effect and the other treatment has a smaller effect that evolves 
more slowly over time. The linear plus quadratic model provides good fit 
to the treatment arm with smaller changes. Compared to the unstructured 
model, the linear plus quadratic model smoothed the somewhat erratic and 
seemingly random mean changes around the overall trend. However, the 
linear plus quadratic model provides poor fit to the arm with a rapid and 
sustained effect.

The examples are not intended to be a full exploration of modeling alterna-
tives. Rather, the intent is merely to show that in some cases structured time 
models adequately describe mean trends over time and in other situations 
they don’t.

Another aspect of mean trends over time that must be considered is with 
regard to the other covariates included in the analysis and their interaction 
with time. For example, the effect of baseline severity may be an important 
covariate because subjects’ responses may depend on their condition at the 
start of the trial. It is usually preferable to allow a full interaction of covari-
ates with time because, if not, a restriction is imposed that the dependence 
of response on the covariate is the same at all assessment times (Mallickrodt 
et al. 2008, 2014). 

Alternatively, both the baseline and post-baseline measures can be treated 
as response variables (Liang and Zeger 2000). This topic is covered in detail 
in Chapter 9. For other covariates, it may be appropriate not to include inter-
action with time because the effects are constant; but such decisions need to 
be justified a priori (Mallinckrodt et al. 2008). 
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FIGURE 8.3
Unstructured modeling of time compared with linear plus quadratic trends in a scenario with 
a rapidly evolving treatment effect.
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8.2 Unstructured Modeling of Means Over Time 

Code fragments for fitting an unstructured model for means over time in 
SAS and R for the small complete data set are listed in Section 8.4 (Code 
Fragment 8.1). Key aspects of this code include specifying time as a class 
effect and fitting the treatment-by-time interaction along with all other two-
way interactions of covariates with time. Unstructured modeling of means 
over time was used throughout Chapter 7 when considering approaches to 
model correlations between repeated measurements. 

Results from the unstructured means model in SAS PROC MIXED are 
summarized in Table 8.1. Both the treatment (2) and control group (1) had 
significant mean improvement over time (P = 0.001). The mean difference 
between treatments increased over time, reaching statistical significance 
(P < 0.05) at the endpoint visit (Time 3). The treatment main effect approached 
significance (P < 0.10).

8.3 Structured Modeling of Means Over Time

8.3.1 Time as a Fixed Effect

Code fragments for fitting time as a linear fixed effect in SAS and R for 
the small complete data set are listed in Section 8.4 (Code Fragment 8.2). 

TABLE 8.1

Results from the Unstructured Time Model in SAS PROC MIXED

Treatment TIME Estimate
Standard 

Error
LSMEAN 
Difference P

1 1 −4.12 0.91 1.19 0.360
2 1 −5.31 0.91
1 2 −6.70 0.93 1.99 0.135
2 2 −8.69 0.93
1 3 −9.86 1.05 3.39 0.0274
2 3 −13.25 1.05

Residual covariance matrix
1 20.61 15.30 12.28
2 15.30 21.36 17.67
3 12.28 17.67 27.61

Note: P values for treatment main effect, the main effect of time, and 
 treatment-by-time interaction were 0.073, 0.001, and 0.287, respec-
tively. The values for − 2 x residual log likelihood and AIC were 
810.4 and 822.4, respectively. 
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Key aspects of this code include specifying time as a continuous effect (time 
not included in class statement), thereby using a single degree of freedom 
each for time and the treatment-by-time interaction. The endpoint contrast is 
obtained by comparing treatment lsmeans at the value of 3 for time. 

Results from fitting time as a linear fixed effect are summarized in 
Table 8.2. Results did not differ remarkably from fitting time as unstructured 
in this example. However, the model fit was slightly worse for the linear 
fixed effect analysis. 

Code fragments for fitting time as linear plus quadratic fixed effects in 
SAS and R for the small complete data set are listed in Section 8.4 (Code 
Fragment 8.3). In this approach, as in the unstructured model, time and 
the  treatment-by-time interaction both use two degrees of freedom. In 
fact, the two approaches are equivalent and yield identical results. Fitting 
time as unstructured is equivalent to fitting a t-1 degree polynomial. 
Therefore, with 3 time points, a model with linear and quadratic terms 
for time is equivalent to the unstructured model. Of course, a linear plus 
quadratic model would not be equivalent to unstructured with more than 
3 time points.

8.3.2 Time as a Random Effect—Random Coefficients Regression

Code fragments for SAS and R implementations of a random coefficients 
regression model with random terms for intercept and slope (i.e., time is 
a linear random effect) are listed in Section 8.4 (Code Fragment 8.4). Key 
aspects of this code include specifying time as a continuous fixed effect 
(continuous variable TIME not included in class statement) and as a ran-
dom effect, along with intercept. The Type = option in the random state-
ment allows for correlation between the random terms. As in the fixed 

TABLE 8.2

Results from Fitting Time as a Linear Fixed Effect in SAS 
PROC MIXED

Treatment TIME Estimate
Standard 

Error
LSMEAN 
Difference P

1 1 −4.07 0.92  1.14 0.389
2 1 −5.21 0.92
1 2 −6.91 0.86 2.21 0.076
2 2 −9.13 0.86
1 3 −9.76 1.06 3.28 0.034
2 3 −13.05 1.06

Note: P values for treatment main effect, the main effect of time, and 
treatment-by-time interaction were 0.076, 0.003, and 0.133, 
respectively. The values for − 2 x residual log likelihood and AIC 
were 819.5 and 831.5, respectively. 
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effects model, the endpoint contrast is obtained by comparing treatment 
lsmeans at the value of 3 for time. 

Results from fitting the random coefficient regression model with intercept 
and time as random effects are summarized in Table 8.3. Results did not dif-
fer remarkably from fitting time as unstructured or as a linear fixed effect in 
this example.

A quadratic term for time could be added to the random statement. 
However, in such models it may be useful to center the time variable (sub-
tract the mean time from each value for time) and to use a time scale that 
is not overly granular. For example, fitting time in years may be prefer-
able to fitting time in days because the latter is likely to yield smaller vari-
ance, which could cause convergence problems or result in a nonpositive 
definite hessian matrix. It may also be useful to transform time variables 
into orthogonal polynomials, especially for fitting higher-order (e.g., cubic) 
terms.

It is possible to capture additional correlation between repeated mea-
surements in a random coefficients regression analysis via a residual cor-
relation structure. However, guarding against overspecification of models 
is important. For example, fitting random intercepts and slopes plus an 
unstructured error covariance specifies too many parameters for the vari-
ance function, and a more parsimonious error covariance structure is 
needed.

TABLE 8.3

Results from Fitting a Random Coefficient Regression Model with 
Intercept and Time as Random Effects in SAS PROC MIXED

Treatment TIME Estimate
Standard 

Error
LSMEAN 
Difference P

1 1 − 4.03 0.91  1.09 0.401
2 1 − 5.12 0.91
1 2 − 6.90 0.84 2.19 0.073
2 2 − 9.09 0.8
1 3 − 9.77 1.04 3.29 0.030
2 3 − 13.06 1.04

Estimated G Matrix

Intercept Time Residual

Intercept 24.14 − 0.528

Time − 0.528 3.54

Residual 4.75

Note: P values for treatment main effect, the main effect of time, and treat-
ment-by-time interaction were 0.073, 0.001, and 0.117, respectively. The 
values for −2 x residual log likelihood and AIC were 820.1 and 828.1, 
respectively.
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8.4 Code Fragments

CODE FRAGMENT 8.1 SAS and R Code for 
Fitting an Unstructured Time Model

SAS code

PROC MIXED DATA=ONE;
CLASS SUBJECT TRT TIME;
MO DEL CHANGE = BASVAL TRT TIME BASVAL*TIME TRT*TIME / 

DDFM=KR; 
REPEATED TIME / SUBJECT=SUBJECT TYPE =UN R; 
LSMEANS TRT*TIME/DIFFS;
OD S OUTPUT DIFFS=_DIFFS (where=(TIME= _TIME)) LSMEANS=_

LSMEANS ;RUN;

R code

fitgls.erun  <- gls(change ~ basval +trt+ TIME + 
basval*TIME+ trt*TIME, data = complete, 
weights = varIdent(form= ~ 1 | TIME), 
correlation=corSymm(form=~ 1| subject))

summary(fitgls.erun)

# computing error variance-covariance matrix
getVarCov(fitgls.erun)

# evaluating least squares means at time 3
co ntrast(fitgls. erun ,a = list(trt = "1", 

basval= mean(complete$basval), TIME = "3"), 
type = “individual”)

co ntrast(fitgls. erun ,a = list(trt = "2", 
basval= mean(complete$basval), TIME = "3"), 
type = “individual”)

# evaluating treatment contrast at time 3
contrast(fitgls. erun ,a = list(trt = "1", basval= 

mean(complete$basval), TIME = "3"), 
b = list(trt = “2”, basval= 
mean(complete$basval), TIME = “3”), 
type = “individual”)
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CODE FRAGMENT 8.2 SAS and R Code for 
Fitting Time as a Linear Fixed Effect

SAS code

TIME2 is continuous time variable assuming values 1, 2, 3. Variable TIME 
is also needed as a CLASS variable because it is used in REPEATED 
statement.
PROC MIXED DATA=ONE;
CLASS SUBJECT TRT TIME;
MO DEL CHANGE =BASVAL TRT TIME2 BASVAL*TIME2 TRT*TIME2 / 

DDFM=KR; 
REPEATED TIME/SUBJECT=SUBJECT TYPE=UN R RCORR; 
LSMEANS TRT / at TIME2 = 1 DIFFS;
LSMEANS TRT / at TIME2 = 2 DIFFS;
LSMEANS TRT / at TIME2 = 3 DIFFS;
OD S OUTPUT DIFFS=_DIFFS (where=(TIME= _TIME)) 

LSMEANS=_LSMEANS;
RUN;

R code

# using continuous time, creating timec variable
complete$timec<-as.numeric(complete$TIME)

fitgls.cont.time  <- gls(change ~ basval +trt+ timec + 
basval*timec+ trt*timec, data = complete, 
weights = varIdent(form= ~ 1 | timec), 
correlation=corSymm(form=~ 1| subject))

#  note since timec is continuous variable, it is set at 
numerical value=3, not a character value =”3”

contrast(fitgls. cont.time ,a = list(trt = "1", 
basval= mean(complete$basval), timec = 3), 
b = list(trt = "2", basval= 
mean(complete$basval), timec = 3), 
type = "individual")
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CODE FRAGMENT 8.3 SAS and R Code for Fitting 
Time as Linear + Quadratic Fixed Effects

SAS code

TIME2 is continuous time variable assuming values 1, 2, 3. 

PROC MIXED DATA=ONE;
CLASS SUBJECT TRT;
MO DEL CHANGE =BASVAL TRT TIME2 BASVAL*TIME2 TRT*TIME2 

TIME2*TIME2 TRT*TIME2*TIME2 BASVAL*TIME2*TIME2 / 
DDFM=KR; 

REPEATED TIME/SUBJECT=SUBJECT TYPE=UN R RCORR; 
LSMEANS TRT/ at TIME2= 1 DIFFS;
LSMEANS TRT/ at TIME2= 2 DIFFS;
LSMEANS TRT/ at TIME2= 3 DIFFS;
OD S OUTPUT DIFFS=_DIFFS (where=(TIME= _TIME)) 

LSMEANS=_LSMEANS;
RUN;

R Code

# creating additional variable, time squared
complete$tsq<-complete$timec^2

fitgls.cont.time2  <- gls(change ~ basval +trt+ timec + 
basval*timec+ trt*timec+tsq+trt*tsq+ 
basval*tsq, data = complete, weights = 
varIdent(form= ~ 1 | timec), 
correlation=corSymm(form=~ 1| subject))

summary(fitgls.cont.time2)

# evaluating treatment contrast at time=3
#  need to specify squared time tsq in the contrast at fixed 

value
contrast(fitgls. cont.time2, a = list(trt = "1", 

basval = mean(complete$basval), timec = 3, 
tsq = 9), b = list(trt = "2", basval= 
mean(complete$basval), timec = 3, tsq=9), 
type = "individual")



94 Analyzing Longitudinal Clinical Trial Data

CODE FRAGMENT 8.4 SAS and R Code for 
Fitting a Random Coefficient Regression Model 

with Intercept and Time as Random Effects

SAS Code

PROC MIXED DATA=ONE;
CLASS SUBJECT TRT;
MO DEL CHANGE =BASVAL TRT TIME BASVAL*TIME TRT*TIME / 

DDFM=KR; 
RANDOM INT TIME / SUBJECT=SUBJECT TYPE=UN G GCORR; 
LSMEANS TRT/ at TIME= 1 DIFFS;
LSMEANS TRT/ at TIME= 2 DIFFS;
LSMEANS TRT/ at TIME= 3 DIFFS;
ODS OUTPUT DIFFS=_DIFFS LSMEANS=_LSMEANS;

RUN;

R Code

fitLME.rint.tim e <- lme(change ~ basval +trt+ timec + 
basval*timec+ trt*timec, data =complete, 
random = ~ 1+timec |subject)

summary(fitLME.rint.time)
getVarCov(fitLME.rint.time)

# lsmeans at timec=3 
contrast(fitLME.rint.tim e ,a = list(trt = "1", basval= 

mean(complete$basval), timec = 3) 
type = "individual")

contrast(fitLME.rint.tim e ,a = list(trt = "2", basval= 
mean(complete$basval), timec = 3) 
type = "individual")

# treatment contrast at timec=3
contrast(fitLME.rint.tim e ,a = list(trt = "1", basval= 

mean(complete$basval), timec = 3), 
b = list(trt = "2", basval= 
mean(complete$basval), timec = 3), 
type = "individual")

8.5 Summary

Although the longitudinal pattern of mean treatment effects is usually of 
interest, the functional form of the response profiles may be difficult to antic-
ipate. Structured (parsimonious) approaches to modeling means over time 
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may be more powerful if appropriate, but may not fit the data adequately, 
leading to inaccurate results.

Clinical trials typically have a set number of assessment times that are 
fixed within narrow intervals. The number of assessment times relative 
to the number of patients is typically small. The number of parameters to 
describe the means over time from an unstructured model increase linearly 
with the number of assessment times. These attributes suggest that unstruc-
tured modeling of mean trends over time is often possible. This is important, 
especially in confirmatory studies, because an unstructured model for the 
means requires no assumption about the time trend and models with fewer 
assumptions are preferred. 

In many situations, an unstructured model for the mean trends over time 
can be prespecified because the number of parameters to be estimated rela-
tive to the number of observations is small. If the anticipated data structure 
is not expected to be amenable to unstructured modeling, likelihood ratio 
tests can be used to pick the best fitting model after data become available.
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9
Accounting for Covariates

9.1 Introduction

Covariates are commonly included in analyses of longitudinal clinical trials. 
In Section 8.1, it was noted that it is usually preferable, or at least it should 
be considered, to allow a full interaction of covariates with time. Fitting 
 covariate-by-time interactions avoids imposing restrictions that the depen-
dence of response on the covariates is the same at all assessment times. 
Therefore, throughout this chapter, examples will be used that include not 
only the covariate but also the covariate interaction with time.

Covariates are often included in longitudinal analyses to account for the 
variability due to these effects, thereby yielding more precise estimates of 
treatment effects. This can be particularly important when values of con-
tinuous covariates or levels of categorical covariates are not balanced across 
treatments.

Covariate-by-treatment interactions, commonly called subgroup analy-
ses when the covariate is a categorical effect, are included in longitudinal 
analyses to assess the consistency of treatment effects across levels of the 
covariate. Consistency of treatment effect across subgroups indicates that the 
average treatment effect is in general applicable regardless of the specific 
characteristic described by the covariate. Substantial heterogeneity in treat-
ment effect may indicate that treatment benefit pertains only to a subset of 
the population. However, apparent heterogeneity in the observed treatment 
effect across subgroups can arise due to chance as a result of partitioning the 
population into several subgroups. Furthermore, clinical trials are generally 
not powered for detecting heterogeneity in treatment effects, thus statistical 
tests may miss detection of existing heterogeneity due to low power (Alosh 
et al. 2015). This chapter emphasizes how to fit covariates and the conse-
quences of so doing. It does not cover model building approaches to decide 
which covariates to include. For more details on model building, see Verbeke 
and Molenberghs (2000).

The impact of baseline severity on outcomes is an important consideration 
in longitudinal clinical trials. Baseline severity is a special case of covari-
ate adjustment because it can be taken into account either through covariate 
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adjustment or by including baseline as part of the response vector. Both 
approaches, along with their respective strengths, limitations, and consider-
ations, will be illustrated.

This chapter begins with an illustration of including a continuous covari-
ate for baseline severity. Other continuous covariates can be fit in the same 
manner as illustrated for baseline severity. Subsequent sections illustrate 
how baseline severity can be accounted for as a response variable, how to 
account for categorical covariates, and covariate-by-treatment interactions. 
Covariates and model development can be an important consideration in the 
handling of missing data. See Chapter 12 and Chapter 15 for more details on 
the role of covariates with regard to handling missing data.

9.2 Continuous Covariates

9.2.1 Baseline Severity as a Covariate

The small complete data set is used to illustrate key concepts in fitting 
covariates. Code Fragment 9.1 in Section 9.5 provides details on fitting a 
model with baseline severity as a covariate in SAS and R.

To illustrate covariate adjustment, consider the results in Table 9.1 from 
likelihood-based analyses. Two models were used. The “simple” model 
included only treatment, time, and the treatment-by-time interaction. 
The “baseline” or ANCOVA model included those same effects plus base-
line and baseline-by-time interaction as specified in Code Fragment 9.1. 
In the simple model, because the data were completely balanced (same 
number of observations for each treatment-by-time combination) the 
lsmeans for the treatment-by-time interaction effects are equal to their 

TABLE 9.1

Results from Analyses of Small Complete Data Set with and without 
Baseline Severity as a Covariate

Treatment Time

Simple Model Model Including Baseline

LSMEAN SE LSMEAN SE

1 1 −4.20 0.94 −4.13 0.91
2 1 −5.24 0.94 −5.32 0.91
1 2 −6.80 0.97 −6.70 0.93
2 2 −8.60 0.97 −8.70 0.93
1 3 −9.88 1.04 −9.86 1.05
2 3 −13.24 1.04 −13.26 1.05
Endpoint 
Contrast

3.36 1.47 (p = 0.0270) 3.39 1.49 (p = 0.0274)
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corresponding raw means. In  the model with baseline and baseline-by-
time interaction, the lsmeans do not equal the raw means, thereby reflect-
ing the influence of correcting for differences between treatments in 
baseline values.

Recall from Table 4.3 that the mean baseline values were 19.80 and 19.32 
for Treatments 1 and 2, respectively. Given this similarity of baseline means, 
differences in treatment contrasts between models fitting versus not fitting 
baseline severity are expected to be small. With greater imbalance between 
baseline means, the greater the potential for covariate adjusted results to dif-
fer from unadjusted results.

The relationship between baseline and change was such that for each 
1 point increase in baseline severity, change (improvement) from baseline 
increased on average approximately 0.06 points. Therefore, correcting for the 
approximately 0.50 point greater mean baseline in Treatment 1 (by includ-
ing baseline as a covariate) increased the difference between treatments in 
change at Time 3 by about 0.03 (0.50 mean difference in baseline × the 0.06 
change in response per unit change in baseline severity).

To further clarify how including baseline as a covariate influenced 
results, consider the observed and predicted values for selected subjects 
summarized in Table 9.2. In the simple model, each subject’s predicted 
value equals the corresponding lsmean for the treatment-by-time combi-
nation. That is, the model contained only group effects; no information 
unique to individual subjects was in the model. Therefore, individuals’ pre-
dictions were entirely derived from the group means. Including baseline 
as a covariate introduced information specific to individual subjects, and 
the predicted values for each subject were based on a combination of group 
means and individual subject data (baseline values). Lower baseline values 

TABLE 9.2

Predicted Values for Selected Subjects from Analyses of Complete Data with 
a Simple Model and a Model that Included Baseline Values as a Covariate

Subject Modela Treatment Time Baseline
Actual 
Change

Predicted 
Change

1 Simple 2 3 24 − 24 −13.24
Baseline −13.54

2 Simple 1 3 20 − 5 −9.88
Baseline −9.89

4 Simple 2 3 10 − 9 −13.24
Baseline −12.64

5 Simple 1 3 12 − 9 −9.88
Baseline −9.37

a Simple model: Change = trt time trt*time. Baseline model added basval and 
basval*time
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were predictive of smaller improvements and higher baseline values were 
predictive of greater improvements.

The mean baseline value was 19.56 (approximately 20). The baseline value 
for Subject 1 was 24, approximately 4 points higher than the baseline mean; 
the baseline values for Subjects 4 and 5 were 10 and 12, respectively, consid-
erably below the mean. Therefore, when including baseline as a covariate, 
the predicted improvement for Subject 1 was greater than the correspond-
ing treatment group mean. Similarly, when including baseline as a covari-
ate, the predicted improvements for Subjects 4 and 5 were smaller than the 
corresponding group means. Subject 2 had a baseline value of 20, close to 
the overall mean; therefore, the predicted values from the models including 
versus not including baseline were nearly identical.

By default, lsmeans are typically estimated based on the mean value of 
continuous covariates. However, it is also useful to look at results when 
values other than the mean are used. [See the “AT” option in the lsmean 
statement of SAS PROC MIXED (SAS 2013) for implementation]. Treatment 
lsmeans and contrasts based on baseline severity of 15 and 25 are summa-
rized in Table 9.3. The treatment contrasts, standard errors, and P values are 
the same across baseline severities of 15, 25, or the default, which is the mean 
value of 19.56. Within-group means, however, are influenced by the baseline 
value, consistent with the regression coefficient for change on baseline sever-
ity, which in this case is approximately 0.06. Therefore, conditioning on a 
baseline value of 15 resulted in lsmeans approximately 0.60 lower than when 
conditioning on a baseline value of 25.

9.2.2 Baseline Severity as a Response

Although fitting baseline severity as a covariate is a common approach, it 
is not the only option. Baseline severity is a special case of covariate adjust-
ment because baseline severity can be considered a response at Time 0 and 
therefore may also be accounted for through including baseline outcomes as 
part of the response vector (Liang and Zeger 2000). This subsection details 
two methods that include baseline as a response, the so-called LDA (longi-
tudinal data analysis) and the cLDA (constrained longitudinal data analysis) 

TABLE 9.3

Least Squares Means and Treatment Contrasts Conditioning on 
Various Levels of Baseline Severity

Baseline TRT LSMEAN
LSMEAN 
Difference

Standard 
Error

P 
Value 

15 1 −9.57

2 −12.96 3.39 1.49 0.0274

25 1 −10.21

2 −13.60 3.39 1.49 0.0274
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(Liu et al. 2009). The constraint in cLDA is that the baseline values are equal 
in the intervention groups.

Code fragments are listed in Section 9.5 to implement LDA and cLDA 
models in SAS and R (Code Fragments 9.2 and 9.3, respectively). For these 
analyses, data are arranged so that there are four responses per subject, 
with baseline being the Time = 0 response. For the cLDA analysis, addi-
tional steps are required to create the time-specific treatment indicators 
tt0-tt3. These dummy variables are components of the treatment-by-time 
interaction: ttk=I(TIMEk*TRT) for k=1,2,3, where I(.) is the indicator func-
tion, returning 1 when the argument is TRUE and 0 if FALSE. The model 
is fit with time as a class variable (to estimate time-specific least squares 
means at Time=1, 2, 3) and the three dummy variables tt1, tt2, tt3 that cap-
ture treatment-specific least-squares means at time=1, 2, 3.

The tt0 variable and the I(Time=0)*Treatment interaction term are not fit 
in the model in order to implement the constraint of equal baseline means. 
The two treatments in essence have a common set of baselines, hence equal 
baselines, as would be expected on average from randomization; Table 9.4 
lists data for selected subjects as prepared for LDA and cLDA.

TABLE 9.4

Data for LDA and cLDA Analyses

Subject TRT TIME Y

Data for LDA
16 1 0 19

16 1 1 16

16 1 2 8

16 1 3 2

17 2 0 20

17 2 1 9

17 2 2 5

17 2 3 1

Subject TIME Y TT0 TT1 TT2 TT3

Data for cLDA
16 0 19 0 0 0 0
16 1 16 0 0 0 0
16 2 8 0 0 0 0
16 3 2 0 0 0 0
17 0 20 1 0 0 0
17 1 9 0 1 0 0
17 2 5 0 0 1 0
17 3 1 0 0 0 1

Note: The tt0 variable is not fit in the model in order to constrain 
lsmean by omitting the (Time=0)*TRT interaction term.
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Endpoint contrasts from the various methods of accounting for base-
line severity in the small complete data set are summarized in Table 9.5 
and residual variances and correlations are summarized in Table 9.6. The 
endpoint (Time 3) contrast from the cLDA and ANCOVA models were 
identical. This will only be the case in complete data. Standard errors and 
P values were similar across methods, as were correlations between the 
residuals. However, residual variances were greater for the LDA and cLDA 
models.

Although results from the ANCOVA, LDA, and cLDA methods tend to 
be similar in many situations, circumstances exist when important differ-
ences are likely. To illustrate, data from the small complete data set were 

TABLE 9.5

Endpoint Contrasts from Various Methods 
of Accounting for Baseline Severity in the 
Small, Complete Data Set

Method
LSMEAN 
Difference

Standard 
Error P

ANCOVA 3.391 1.489 0.0274
LDA 3.360 1.473 0.0270
cLDA 3.391 1.501 0.0284

TABLE 9.6

Residual Variances and Correlations from 
Various Methods of Accounting for Baseline 
Severity in the Small, Complete Data Set

Time 0 1 2 3

Baseline as Covariate (ANCOVA)
1 20.612 0.729 0.515
2 21.358 0.724
3 27.614

LDA
0 16.613 0.529 0.473 0.591
1 28.038 0.796 0.665
2 26.938 0.797
3 41.577

cLDA
0 16.333 0.526 0.470 0.588
1 27.906 0.795 0.663
2 26.836 0.796
3 41.331
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altered in the following ways. In alteration 1, the baseline values for Subjects 
1 to 15 were deleted. In alteration 2, no baseline values were deleted but all 
post-baseline data for Subjects 1 to 15 were deleted. Endpoint contrasts from 
the three methods of handling baseline severity (ANCOVA, LDA, cLDA) are 
summarized in Table 9.7 for alteration 1 and in Table 9.8 for alteration 2.

For the ANCOVA method, results were identical from the two alterations, 
with the treatment contrast smaller than in the complete data. That is, when 
fitting baseline as a covariate, deleting 15 baseline values had the same impact 
as deleting all the post-baseline data for those 15 subjects—because observa-
tions with missing covariates are not used in the analysis. However, in the 
LDA and cLDA analyses where baseline is considered a response, deleting 
15 baseline values left 185 of the 200 values to be used in the analysis, and 
all post-baseline observations are used. Therefore, missing baseline values 
had a smaller effect on the LDA and cLDA analyses than on the ANCOVA 
analyses.

For alteration 2, deleting all the post-baseline data for Subjects 1 to 15, 
results were similar across methods.

9.2.3 Choosing the Best Approach

In the ANCOVA model where baseline is accounted for as a covariate, base-
line is considered a fixed effect. In the LDA and cLDA models where baseline 

TABLE 9.7

Endpoint Contrasts from Various Methods of Accounting for 
Baseline Severity in the Small, Complete Data Set with 15 Baseline 
Values Deleted

Method
LSMEAN 
Difference

Standard 
Error

P 
Value

Number of Observations

Used Not Used

ANCOVA 2.239 1.846 0.234 155 45
LDA 3.125 1.619 0.060 185 15
cLDA 3.323 1.613 0.045 185 15

TABLE 9.8

Endpoint Contrasts from Various Methods of Accounting for Baseline 
Severity in the Small, Complete Data Set with All Post Baseline 
Values Deleted for 15 Subjects

Method
LSMEAN 
Difference

Standard 
Error

P 
Value

Number of Observations

Used Not Used

ANCOVA 2.239 1.846 0.234 155 45
LDA 2.264 1.828 0.224 155 45
cLDA 2.239 1.862 0.238 155 45
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is considered a response, it is a random effect. The ANCOVA model tends 
to be the easier and the more common approach. In the ANCOVA model, 
F tests for the treatment main effect and treatment-by-time interaction are 
more meaningful than in the LDA or cLDA approaches. Treatment main 
effects in LDA and cLDA are diluted because at Time 0 (baseline) there is no 
difference between treatments. This zero difference at Time 0 can also inflate 
the treatment-by-time interaction term in LDA and cLDA.

However, when an appreciable number of baseline observations are miss-
ing, or when an appreciable number of subjects have a baseline but no post-
baseline values, the LDA or cLDA approaches can have advantages, and it is 
important for analysts to understand the strengths and limitations of vari-
ous approaches to account for baseline severity.

If baseline severity is considered a fixed effect, then the ANCOVA model is 
appropriate. This model addresses the conditional question of the treatment 
effect in subjects with the baseline values fixed as in the current clinical trial. 
If baseline severity is considered a random effect, then the LDA and cLDA 
models are appropriate. By considering baseline severity as a random effect, 
inference can be extended to the general population of subjects from which 
the sample was drawn.

9.3 Modeling Categorical Covariates

Categorical covariates are fit in longitudinal models similar to continuous 
covariates, except the covariate is considered a class effect. Code fragments 
are listed in Section 9.5 to fit gender as a categorical variable in the small 
complete data set using SAS and R (Code Fragment 9.4). As with continu-
ous covariates, adding just the main effect of the covariate assumes a con-
stant covariate effect at all assessments. Therefore, it is often useful to fit the 
interaction of the categorical covariate with time, and that is the approach 
taken in this section. However, if the categorical covariate has many lev-
els, especially when combined with numerous assessment times, fitting the 
covariate-by-time interaction can require estimating too many parameters 
unless the sample size is large. In practice, this consideration most often 
comes into play for fitting investigative site and its interaction with time.

Results from fitting a model with gender and gender-by-time interaction 
are compared to results from the simple model that included only treatment, 
time, and the treatment-by-time interaction in Table 9.9. As illustrated in 
Section 9.2 for continuous covariates, because the data were completely bal-
anced (same number of observations for each treatment-by-time combina-
tion), the lsmeans for the treatment-by-time interaction effects in the simple 
model are equal to their corresponding raw means. In the model with gen-
der and gender-by-time interaction, the lsmeans for each treatment-by-time 
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combination do not equal the raw means, thereby reflecting covariate adjust-
ments for gender.

Treatment 1 included 40% females and 60% males, whereas Treatment 2 
had 76% females and 24% males. Females tended to have greater changes 
from baseline than males. Therefore, the covariate-adjusted analyses cor-
rect for the overrepresentation of females—subjects with more favorable 
 outcomes—in Treatment 2, resulting in smaller mean changes for Treatment 2 
and smaller differences between treatments than in the unadjusted analyses.

9.4 Covariate-by-Treatment Interactions

Sections 9.2 and 9.3 discussed models with continuous and categorical 
covariates. In longitudinal clinical trials, it can also be useful to understand 
if the effects of the covariate differed by treatment group; that is, to assess 
subgroup-by-treatment interactions. A full discussion of model develop-
ment and testing is beyond our present scope. The intent here is to illustrate 
an implementation of such models and to consider what the results imply.

9.4.1 Continuous Covariates

Code fragments are listed in Section 9.5 to implement models with base-
line severity-by-treatment interactions in SAS and R (Code Fragment 9.5). 
Results from models using the default approach that conditions on the mean 
baseline value are compared to results when conditioning on baseline values 
of 15 and 25 in Table 9.10. Increasing baseline from 15 to 25 increased the 
lsmean for Treatment 1 by 1.40, whereas the increase for Treatment 2 was 
only 0.35, reflecting heterogeneity in the regression of change on baseline 

TABLE 9.9

Results from Analyses of Small Complete Data Set with and without 
Gender as a Covariate 

Treatment Time

Simple Model Model Including Gender

LSMEAN SE LSMEAN SE

1 1 −4.20 0.94 −4.53 0.90
2 1 −5.24 0.94 −4.39 0.96
1 2 −6.80 0.97 −6.98 0.98
2 2 −8.60 0.97 −8.14 1.04
1 3 −9.88 1.04 −9.91 1.06
2 3 −13.24 1.04 −13.15 1.13
Endpoint 
Contrast

3.36 1.47 (p = 0.0270) 3.24 1.60 (p = 0.049) 
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across treatments. Therefore, the net impact of adding the various interac-
tion terms to account for differential baseline effects across treatments was 
greater treatment differences at lower baseline severity.

As in simpler regression settings, moving further away from mean levels 
of an independent variable increased uncertainty. Therefore, the standard 
error of the treatment contrast was smaller when assessed at the mean level 
of baseline severity.

9.4.2 Categorical Covariates

Code fragments are listed in Section 9.5 to implement models with gender-
by-treatment interaction in SAS and R (Code Fragment 9.6). Lsmeans for the 
three-way gender-by-treatment-by-time interaction and the two-way treat-
ment-by-time interaction are summarized in Table 9.11. From the three-way 
interaction, the difference between treatments at Time 3 was approximately 
5 in females and 0.5 in males. The two-way interaction lsmeans reflect the 
equal weighting given to each gender and the lsmean is the average of the 
corresponding gender-specific lsmeans from the three-way interaction. For 
example, the treatment difference at Time 3 = 2.75, which is the average of 
the 5 point treatment contrast in females and the 0.5 point treatment con-
trast in males.

Recall that in the simple model that included only treatment, time and 
treatment-by-time interaction, the difference between treatments was 3.36. 
Therefore, when correcting for the imbalance in the number of subjects by gen-
der in each treatment via including gender and gender-by-time interactions, 
the treatment difference was 3.24. When including the gender-by-treatment 
interaction terms to further account for a differential treatment effect by gen-
der, the treatment effect was further reduced to 2.75.

Code fragment 9.5 includes as part of the SAS code an option in the 
lsmeans statement “SLICE=GENDER*TIME”. The slice option is a conve-
nient way to partition interactions into component parts. Specifying slices 

TABLE 9.10

Least Square Means at Time 3 Conditioning on 
Various Levels of Baseline Severity in Models Including 
Baseline-by-Treatment Interaction 

Baseline Treatment
Time 3 

LSMEAN
LSMEAN 
Difference

Standard 
Error

Mean 1 −9.85
2 −13.25 3.40 1.50

15 1 −9.20
2 −13.08 3.88 2.46

25 1 −10.60
2 −13.43 2.83 2.69
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for gender by time yields significance tests for treatment contrasts for each 
gender-by-time combination.

Because this example has two treatment arms, the P values are essen-
tially t-tests, but with three or more groups these would be F-tests. Similar 
tests could be achieved via contrast statements. However, correctly coding 
the series of three-way interaction contrasts is far more tedious than simply 
specifying the slices option. Results from the slices option are summarized 
in Table 9.12.

The slice option allows partitioning of a three-way interaction into its 
component two-way interactions and to assess a main effect for each level 
of the other two factors, as was done in assessing treatment differences for 
each gender-by-time combination. For example, the slice option could be 
used to assess gender differences for each treatment-by-time combination 
(slice=trt*time); the two-way treatment-by-time interaction for each gender 
(slice=gender); the gender-by-treatment interaction for each time (slice=time), 
or the gender-by-time interaction for each treatment (slice=treatment).

TABLE 9.11

Least Square Means at Time 3 by Gender and Treatment

Treatment Gender N LSMEAN
LSMEAN 
Difference

Gender-by-Treatment lsmeans at Time 3
1 F 10 −8.90 5.04
2 F 19 −13.94
1 M 15 −10.53
2 M 6 −11.00 0.47

Treatment lsmeans at Time 3
1 25 −9.72

2 25 −12.47 2.75

TABLE 9.12

Significance Tests Based on 
the Slices Option in SAS

Treatment Contrast

Time Gender P

1 F 0.220
1 M 0.096
2 F 0.169
2 M 0.648
3 F 0.017
3 M 0.854
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9.4.3 Observed versus Balanced Margins

Further consideration of the results in the previous section illustrates 
an important point for categorical subgroup-by-treatment interactions. 
Treatment 1 had 40% females and Treatment 2 had 76% females. By default, 
when the three-way gender-by-treatment-by-time interaction is fit, lsmeans 
for treatment-by-time reflect equal weighting by gender—the results 
expected if there were 50% males and 50% females in each treatment.

It is important to consider if the question being addressed by the analysis 
is best approached with lsmeans reflecting these so-called balanced margins 
(equal weightings). When subjects are randomized to treatment, gender rep-
resentation in each treatment is expected to be equal. If by chance that is not 
the case, covariate adjustment can help restore analytically the balance that 
did not materialize via design. However, randomization is expected to yield 
equal (similar) representation of gender in each treatment, but not equal rep-
resentation of gender within each group. For example, if 2/3 of the clinical 
trial population is female, randomization is expected to yield approximately 
2/3 females in each treatment group. However, by default lsmeans are based 
on complete balance such that lsmeans reflect 50% females and 50% males in 
each treatment group.

If the population from which a clinical trial sample is drawn is not approx-
imately 50/50 male/female, then default lsmeans assuming balance in num-
ber by gender within treatment would not be appropriate. It is possible to 
use software options to obtain lsmeans that reflect the margins observed in 
the actual sample, or user-specified margins. [See, for example, the observed 
margins option for the lsmean statement in SAS PROC MIXED (SAS 2013).] 
This feature allows an interaction to be fit without forcing the use of bal-
anced margins.

9.5 Code Fragments

CODE FRAGMENT 9.1 SAS and R Code for 
Fitting Baseline Severity as a Covariate

SAS Code

PROC MIXED DATA=All;
CLASS SUBJECT TRT TIME;
MODEL Y = BASVAL TRT TIME BASVAL*TIME TRT*TIME/ DDFM=KR;
REPEATED TIME / SUB=SUBJECT TYPE=UN R RCORR;
LSMEANS TRT*TIME /DIFFS;

RUN;
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R Code

fi tgls.bas <- gls(Y ~ basval +trt+ TIME + basval*TIME, 
data = complete,

 weights = varIdent(form= ~ 1 | TIME),
 correlation= corSymm(form=~ 1| subject))

CODE FRAGMENT 9.2 SAS and R Code for Fitting an LDA Model

SAS Code

PROC MIXED DATA=RESPONSE;
CLASS SUBJECT TRT TIME;
MODEL Y = TRT TIME TRT*TIME / DDFM=KR;
REPEATED TIME / SUB=SUBJECT TYPE=UN R RCORR;
ESTIMATE' ' trt*time -1 0 0  1
 1 0 0 -1;
RUN;

R Code

# setting reference for TIME and trt factors at the last 
level
contrasts(response$TIME) <- contr.treatment(4, base = 4)
contrasts(response$trt) <- contr.treatment(2, base = 2)

fi tgls.resp <- gls(Y ~ trt+ TIME + trt*TIME, 
data = response,

 weights = varIdent(form= ~ 1 | TIME),
 correlation= corSymm(form=~ 1| subject))

# with the parameterization of factors used the difference 
between treatment effects at TIME 3
# and at baseline time is the −1* [coefficient at 
interaction effect trt1:TIME1]

CODE FRAGMENT 9.3 SAS and R Code for Fitting a cLDA Model

SAS Code

PROC MIXED DATA=cLDA;
Class SUBJECT TRT TIME;
MODEL Y = TIME TT1 TT2 TT3 / DDFM=KR;
REPEATED TIME / SUBJECT=SUBJECT TYPE=UN R RCORR;
ESTIMATE 'endpoint diff (trt-pbo)' TT3 -1 /cl;
ESTIMATE 'trt main effect' tt1 -1 tt2 -1 tt3 -1;
CONTRAST 'trt*time interaction' tt1 1 tt2 0 tt3 -1,
 tt1 0 tt2 1 tt3 -1;
RUN;
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R Code

fitgls.cLDA <- gls(Y ~ TIME + tt1+tt2+tt3, data = cLDA,
 weights = varIdent(form= ~ 1 | TIME),
 correlation= corSymm(form=~ 1| subject))

# evaluating treatment contrast at TIME=3
contrast (fitgls.cLDA, a = list(TIME = "3", tt1=0,tt2=0, 

tt3=−1), b = list(TIME = "3", tt1=0,tt2=0, tt3=0), 
type = "individual")

# evaluating the overall treatment effect
contrast (fitgls.cLDA, a = list(TIME = "3", tt1=−1, tt2=−1, 

tt3=−1), b = list(TIME = "3", tt1=0, tt2=0,tt3=0), 
type = "average")

Note: contrast package does not allow evaluation of 
contrasts with DF>1)

CODE FRAGMENT 9.4 SAS and R Code for 
Fitting Gender as a Categorical Covariate

SAS Code

PROC MIXED DATA=ONE;
CLASS SUBJECT TRT TIME GENDER;
MODEL CHANGE = GENDER TRT TIME GENDER*TIME TRT*TIME/DDFM=KR 
OUTP=Cov;
REPEATED TIME/SUBJECT=SUBJECT TYPE=UN R RCORR;
LSMEANS TRT*TIME/DIFFS;
OD S OUTPUT DIFFS=_DIFFS (where=(TIME= _TIME)) LSMEANS=_

LSMEANS ;
RUN;

R Code

complete$GENDER <- as.factor(complete$GENDER)

fi tgls.gender <- gls(change ~ GENDER +trt+ TIME + 
GENDER*TIME+ trt*TIME, data =complete, weights = 
varIdent(form= ~ 1 | TIME), correlation= corSymm(form=~ 1| 
subject))

# tr eatment effect at TIME=3 (note since gender by treatment 
interaction is not fit in the # model, GENDER can be 
fixed at any level in the call to contrast function

cont <-  contrast(fitgls.gender,a = list(trt = "1", 
TIME = "3", GENDER=c("F")), b = list(trt = "2", 
TIME = "3", GENDER=c("F")), type = "individual")
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CODE FRAGMENT 9.5 SAS and R Code for Fitting Baseline 
as a Covariate and its Interaction with Treatment

SAS Code

PROC MIXED DATA=ALL ;
CLASS SUBJECT TRT TIME;
MODEL CHANGE = BASVAL TRT TIME BASVAL*TIME TRT*TIME 

BASVAL*TRT
BASVAL*TRT*TIME/DDFM=KR;
REPEATED TIME/SUBJECT=SUBJECT TYPE=UN R RCORR;
LSMEANS TRT*TIME/DIFFS;
LSMEANS TRT*TIME/DIFFS at BASVAL=15;
LSMEANS TRT*TIME/DIFFS at BASVAL=25;
OD S OUTPUT DIFFS=_DIFFS (where=(TIME= _TIME)) LSMEANS=_

LSMEANS ;
RUN;

R Code

fi tgls.base <- gls(change ~ basval +trt+ TIME + basval*TIME+ 
trt*TIME+basval*trt+basval*trt*TIME, data = complete, 
weights = varIdent(form= ~ 1 | TIME), 
correlation=corSymm(form=~ 1| subject))

# ev aluating treatment contrast at TIME=3 and baseline 
value =25

cont <-  contrast(fitgls.base, a = list(trt = "1", 
TIME = "3", basval=25), b = list(trt = "2", 
TIME = "3",basval=25), type = "individual")

CODE FRAGMENT 9.6 SAS and R Code for Fitting Gender 
as a Categorical Covariate and its Interaction with Treatment

SAS Code

PROC MIXED DATA=ALL;
CLASS SUBJECT TRT TIME GENDER;
MODEL CHANGE = GENDER TRT TIME GENDER*TIME TRT*TIME 

GENDER*TRT
GENDER*TRT*TIME/DDFM=KR;
REPEATED TIME/SUBJECT=SUBJECT TYPE=UN R RCORR;
LSMEANS GENDER*TRT*TIME/DIFFS SLICE=GENDER*TIME;
LSMEANS TRT*TIME/DIFFS;
OD S OUTPUT DIFFS=_DIFFS (where=(TIME= _TIME)) 

LSMEANS=_LSMEANS;
RUN;
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R Code

# fitting in “gender-by-treatment” interactions
fitgls.gender  <- gls(change ~ GENDER +trt+ TIME + 

GENDER*TIME+ trt*TIME+GENDER*trt+GENDER*trt*
TIME, data = complete, 
weights = varIdent(form= ~ 1 | TIME), 
correlation=corSymm(form=~ 1| subject))

# least squares means by gender for trt=1, TIME=3
contrast (fitgls.gender, a = list(trt = "1", TIME = "3", 

GENDER=c("F","M")), type = "individual")

# treatment contrast at TIME=3, for Gender="F"
contrast(fitgls.gender, a = list(trt = "1", 
TIME = "3", GENDER=c("F")), b = list(trt = "2", 
TIME = "3",GENDER=c("F")), type = "individual")

# treatment contrast (averaged across gender groups)
cont <-  contrast(fitgls.gender, a = list(trt = "1", 

TIME = "3", GENDER=c("F","M")), b = list(trt = "2", 
TIME = "3",GENDER=c("F","M")), type = "average")

9.6 Summary

In the ANCOVA model where baseline is accounted for as a covariate, base-
line is considered a fixed effect. In the LDA and cLDA models where baseline 
is considered a response, it is a random effect. The ANCOVA model tends 
to be the easier and the more common approach. However, when an appre-
ciable number of baseline observations are missing, or when an appreciable 
number of subjects have a baseline but no post-baseline values, the LDA or 
cLDA approaches can have advantages.

Fitting just the main effect of the covariate assumes a constant effect at all 
assessments. This assumption may not be justifiable. Therefore, it is often 
useful to fit the interaction of covariates with time.

In longitudinal clinical trials, it can also be useful to understand if 
the effects of the covariate differed by treatment group; that is, to assess 
 subgroup-by-treatment interactions. It is important to consider for categori-
cal covariates, especially when fitting covariate-by-treatment interactions, 
whether focus should be on the observed versus balanced margins. When fit-
ting a continuous covariate, especially when fitting the covariate-by- treatment 
interaction, it may be useful to assess treatment contrasts at values of the 
covariate other than the default of using the mean value.
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10
Categorical Data

10.1 Introduction

A comprehensive review of categorical data analyses can be found in Agresti 
(2002). McCullagh and Nelder (1989) provide specific focus on generalized 
linear models, which are used extensively in categorical data analyses. This 
chapter provides an overview of longitudinal categorical analyses. 

Many of the principles guiding analyses of continuous outcomes also 
apply to categorical outcomes. For example, considerations regarding mod-
eling means over time and correlations between repeated measurements are 
essentially the same as previously outlined for continuous outcomes (see 
Chapters 7 and 8). Additional similarities include the ability to formulate a 
longitudinal categorical analysis with treatment contrasts that exactly match 
the results from an analysis of the endpoint time only. However, analyses of 
categorical endpoints entail additional complexity compared with continu-
ous endpoints that are typically modeled using linear models with Gaussian 
error distributions. This additional complexity stems from the (typically) 
nonlinear relationship between the dependent variable and independent 
variables and from the nonnormal distribution of errors.

Conceptually, accommodating these aspects is as simple as specifying 
an appropriate link function to account for nonlinearity and an appropri-
ate distribution for the errors. However, these accommodations necessitate 
additional computational complexity and intensity, which in turn limits flex-
ibility in implementing analyses. 

Moreover, unlike the “linear normal” modeling of continuous outcomes 
where a single result has both a marginal and a hierarchical (random effects) 
interpretation, the parameters estimated from marginal and random-effects 
models with categorical data, and more broadly for any generalized linear 
mixed model with a nonidentity link function, describe different effects 
and have different interpretations (Jansen et al. 2006). Therefore, the choice 
between marginal and random-effect models should ideally be driven by the 
scientific goals, but the computational complexity and availability of soft-
ware tools are also a consideration. 
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Conceptually, the distinction between marginal and random effects mod-
els is that marginal models estimate the average response in the population, 
whereas random effects models estimate responses for the average subject 
(the subject for which b = 0). In linear mixed-effects models with normally 
distributed data, the average response and the response of the average 
subject are the same because the random effects cancel out when taking 
expectation over the outcome variable. This is due to the additivity of linear 
models with an identity link and also random effects having a mean and 
expected value = 0. Hence, fixed effect parameters estimated from a linear 
mixed-effects model in Gaussian data have both a marginal and hierarchi-
cal interpretation. In nonnormal data these two targets of inference are not 
identical because the function connecting outcome variables and covariates 
is not linear. 

A similar consideration for categorical data analyses is with regard to inclu-
sion of covariates. When a covariate is included, the resultant estimates and 
inferences are conditional on the covariate. By default, analyses are typically 
adjusted to the mean value of the covariate. When the association between the 
response and the covariate is linear, as in Gaussian data, the population aver-
age response and the response of the average subject with the mean covariate 
value are the same. Therefore, in Gaussian data, including versus not includ-
ing covariates does not influence the target of inference; but in non-Gaussian 
data, including versus not including the covariate does influence the target of 
inference because the population average is not equal to the expected value for 
the subject with the average covariate value. The technical details in the next 
section help to further clarify these issues. 

10.2 Technical Details

10.2.1 Modeling Approaches 

Three common modeling approaches to longitudinal categorical data include 
marginal, random effects, and conditional models. 

A marginal model for nonnormally distributed data can be written as

 
h E Y |X xij ijß( )( ) = ′

where h(.) is a link function that creates a linear association between the 
mean of Yij (outcome measured on subject i on jth occurrence) and associated 
covariate vector xij.

In marginal models, marginal distributions are used to describe the out-
come vector Y, given a set of X predictor variables. The correlation among 
the components of Y (e.g., repeated measurements on subjects) and fixed 
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effects parameters can be estimated via fully parametric approaches such 
as likelihood-based analyses, or by working assumptions in the semipara-
metric GEE framework (Molenberghs and Kenward 2007). 

In random-effect models the predictor variables in X are supplemented 
with a vector of random effects: 

 
E Y |X, b x + z bij i ij ij ih( )( ) = ′ ′ß

This model has been termed a generalized linear mixed-effect model. It is 
generalized in the sense that the link function generalized the linear mixed-
effects model to a more general class, allowing for nonnormal (e.g., count or 
binary) data.

In a random-effects model, the fixed effects estimates are conditional upon 
the random-effects vector. In principle, it is possible to model correlations 
among components in Y as a function of both random effects and residual 
correlation. However, in most applications, the computational complexity 
necessitates assuming that conditional upon the random effects the com-
ponents of Y are independent. The linear mixed model for continuous data 
is a special case of this model with an identity link function. The random 
effects bi are, as in general linear models for continuous data, assumed to be 
sampled from a (multivariate) normal distribution with mean 0 and covari-
ance matrix D. With a logit link and normally distributed random effects, 
the familiar logistic-linear generalized linear mixed-effects model (GLMM) 
follows (Molenberghs and Kenward 2007).

In conditional models, the distribution of the components of Y are condi-
tional on X and conditional on (a subset of) the other components of Y. In the 
example below, outcomes are conditional on the previous outcomes: 

 E Y |Y Y , x x + Yij i,j 1, , i1 ij ij i,j 1h( )( ) = ′ α− −ß…

That is, rather than add random effects, expectations are based on previous 
outcomes. In clinical trials, interest is often on an overall, or population aver-
age treatment effect, not on a treatment effect associated with specific outcome 
histories. Therefore, conditional models will not be further considered here.

As noted above, linear mixed model analyses exploit the elegant proper-
ties of the multivariate normal distribution, resulting in fixed effect param-
eters having both a marginal and hierarchical (random effects model) 
interpretation. Given this connection, it is easy to appreciate why the linear 
mixed model provides a unifying framework for analyses of Gaussian data. 
However, the connection between the model families does not exist when 
outcomes are nonnormal (Jansen et al. 2006). Therefore, analysts need dif-
ferent tools for marginal and random-effects analyses of categorical data. 
However, as described in the next section, computational considerations 
restrict implementation of analyses, especially likelihood-based analyses. 
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10.2.2 Estimation

In a generalized linear model (GLM), the log likelihood is well-defined and 
an objective function for estimation of the parameters is straightforward 
to construct. In a GLMM, categorical data pose increased complexity over 
continuous data. These complexities hinder construction of objective func-
tions. Even if the objective function is feasible mathematically, it still can be 
out of reach computationally (SAS 2013). These complexities and restrictions 
have led to the development of a number of estimation methods. Many of 
these methods are based on either approximating the objective function or 
 approximating the model. 

Integral approximation methods approximate the log likelihood of the 
GLMM and submit the approximated function to numerical optimization. 
The advantage of integral approximation methods is that an actual objective 
function is optimized. This facilitates likelihood ratio tests among nested 
models and likelihood-based fit statistics. A significant disadvantage of inte-
gral approximation methods for typical clinical trial scenarios is the inability 
to accommodate residual covariance structures. Hence, the within-subject 
correlations must be modeled as a function of only random effects. The num-
ber of random effects must be small for integral approximation methods to 
be practically feasible (SAS 2013). 

Algorithms to approximate the model can be expressed in terms of Taylor 
series (linearization) and are hence also known as linearization methods. 
They employ expansions to approximate the model based on pseudo data 
with fewer nonlinear components (SAS 2013). For example, one approach is 
based on a decomposition of the data into the mean and an appropriate error 
term. All methods in this class differ in the order of the Taylor approxima-
tion and/or the point around which the approximation is expanded. More 
specifically, one approach uses the decomposition

 
h iY x + z bij ij ij

1
ij ij ijß( )= µ + ε = ′ ′ + ε−

where h−1 is the inverse link function and the error terms have the appropri-
ate distribution (Molenberghs and Kenward 2007).

Several approximations of this model can be considered. The basic idea 
is to create the so-called pseudo data Yi

* to which a general linear model 
can then be fit. Results from this model are then used to update the pseudo 
data and the linear model is refit to the updated pseudo data. This doubly 
iterative procedure continues until the desired level of convergence is met 
(Molenberghs and Verbeke 2005; Molenberghs and Kenward 2007). A spe-
cific example is the so-called pseudo-likelihood approach where 

 Y W Y X Z b X Z bi
*

i
1

i ij i i i i i i i
*( )≡ − µ + β + ≈ β + + ε−
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with Wi being a diagonal matrix with entries equal to v(μij), and with ε ∗ I 

equal to i iW 1ε− , which still has mean zero. This model is essentially a linear 
mixed model for the pseudo data (Molenberghs and Kenward 2007).

Advantages of linearization-based methods include a relatively simple 
form of the linearized model that can be fit based on only the mean and 
variance in the linearized form. Models for which the joint distribution of 
outcome variables (repeated measurements) is difficult—or impossible—to 
ascertain can be fit with linearization-based approaches. Models with cor-
related errors and a large number of random effects are well-suited to linear-
ization methods. The disadvantages of linearization approaches include the 
absence of a true objective function for the overall optimization process and 
potentially biased estimates, especially for binary data when the number of 
observations per subject is small (SAS 2013). 

Generalized estimating equations can circumvent the computational com-
plexity of likelihood-based analyses of categorical data, and is therefore a 
viable alternative whenever interest is restricted to the mean parameters 
(treatment difference, time evolutions, effect of baseline covariates, etc.). 
As  introduced in Chapter 5, generalized estimating equations are rooted 
in the quasi-likelihood ideas expressed by McCullagh and Nelder (1989). 
Modeling is restricted to the correct specification of the marginal mean func-
tion, together with the so-called working assumptions about the correlation 
structure among the repeated measures. 

10.3 Examples

10.3.1 Binary Longitudinal Data

To illustrate analyses of a longitudinal binary outcome, the continuous 
HAMD17 outcomes from the small example data set were dichotomized as 
is often done in depression clinical trials based on whether or not improve-
ment from baseline was ≥ 50%, the so-called responder rate analysis. The 
percentage of responders by treatment and time are summarized below. 

Treatment Time Percent Responders

1 1 8
2 1 24
1 2 32
2 2 44
1 3 56
2 3 88

The model for binary data can be very similar to that used for the cor-
responding continuous endpoint. Fixed effects include treatment, time, 
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treatment-by-time interaction, along with the continuous HAMD17 score as 
baseline covariate and its interaction with time. For hierarchical inference 
that require explicit fitting of random subject effects, likelihood-based esti-
mation would typically be used. For the present purpose marginal inference 
is preferred. Therefore, estimation can be either likelihood-based or via gen-
eralized estimating equations. 

Code fragment 10.1 lists code to fit a pseudo likelihood-based marginal 
model using SAS. Code fragment 10.2 lists code to fit the same marginal 
model using generalized estimating equations. Results are summarized 
in Tables 10.1 and 10.2, respectively. These summaries focus on visit-wise 
contrasts. As with continuous data, emphasis can also be on the fixed 
effect parameter estimates, but are not discussed here. Also note that an 
unstructured correlation matrix was fit in both the pseudo likelihood 
and GEE analyses. Although fitting of alternative correlation structures is 
not discussed here, many of the same principles and approaches apply as 
in continuous data. 

TABLE 10.1

Pseudo Likelihood-Based Results for Binary Data from the Small 
Example Data Set 

Treatment Time

Logit Scale Percent Scalea

P ValueEstimate SE Estimate SE

1 1 −2.511 0.738 0.075 0.051 0.166
2 1 −1.282 0.493 0.217 0.083
1 2 −0.732 0.439 0.325 0.096 0.458
2 2 −0.279 0.414 0.431 0.101
1 3 0.392 0.425 0.597 0.102 0.023
2 3 2.240 0.683 0.904 0.059

a Results on the percent scale are obtained by using the inverse link function.

TABLE 10.2

Generalized Estimating Equation-Based Results for Binary Data from 
the Small Example Data Set 

Treatment Time

Logit Scale Percent Scalea

P ValueEstimate SE Estimate SE

1 1 − 2.518 0.706 0.075 0.048 0.194
2 1 − 1.293 0.577 0.215 0.097
1 2 − 0.729 0.423 0.325 0.093 0.456
2 2 − 0.292 0.409 0.428 0.100
1 3 0.386 0.406 0.595 0.097 0.020
2 3 2.206 0.671 0.901 0.059

a Results on the percent scale are obtained by using the inverse link function.
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Results from the pseudo likelihood and GEE approaches were similar, 
both yielding significant treatment contrasts at Time 3, as was seen for the 
continuous HAMD scores in previous Chapters. At Time 3, response rates 
from both analyses were approximately 90% for Treatment 2 and 60% for 
Treatment 1, reflecting slight differences from the observed percentages due 
to the adjustment for baseline score. 

Dichotomization of continuous outcomes results in a loss of information. 
However, this will not always translate into “less significant” treatment 
contrasts. Treatment differences for the dichotomized outcome depend on 
the distribution of the continuous data relative to the cut point chosen for 
dichotomization. It is possible that the cut off for dichotomization is chosen 
at a point that is achieved by many subjects in one group but not another, 
despite relatively small differences in means. This can happen because 
of greater variance in one group or as an artifact of chance, especially in 
a small sample such as this example where results from the dichotomized 
outcome were actually more significant than from the continuous outcome. 
The P value for the treatment contrast at Time 3 from continuous data was 
0.027 (see Table 7.3), versus 0.023 from pseudo likelihood and 0.020 from GEE 
analyses of the dichotomized (categorical) data. 

10.3.2 Ordinal Model for Multinomial Data

Analyses of the PGI improvement (patient global impression) is used to 
 further illustrate categorical analyses of longitudinal data. The PGI is an 
ordinal variable with scores that can range from 1 (very much improved) 
to 7 (very much worse), with 4 meaning no change (see Chapter 4). The fre-
quency of responses in the 5, 6 and 7 categories were rare. Therefore, all 
scores greater than 4 were recoded as 4 for these analyses. 

Code fragment 10.3 lists SAS code to fit a marginal, ordinal model for these 
multinomial data using GEE. The only differences from Code Fragment 10.2 
that was for a binary outcome is use of a cumulative logit link and multinomial 
error distribution rather than a logit link and a binomial error distribution. 

Although software tools generally accommodate a wide variety of cor-
relation structures that can be fit to categorical data, for multinomial data 
typically independence must be assumed. This strong limitation can be 
addressed by using empirical standard errors based on the sandwich esti-
mator. Results are summarized in Table 10.3. 

First, focus on results at Time 3. The results in Table 10.3 as obtained in 
default output reflect accumulations over categories. Probabilities for indi-
vidual categories can be obtained by subtracting adjacent categories. For 
example, the estimated probabilities for category 3 are 0.501 – 0.209 = 0.292 
for Treatment 1 and 0.174 – 0.053 = 0.121 for Treatment 2. Estimated probabili-
ties for category 1 (very much improved) = 1 – prob 2 or worse, which is 0.079 
for Treatment 1 and 0.291 for Treatment 2. Both treatments had estimated 
probabilities for category 2 of approximately 0.4. 
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Therefore, Treatment 1 had greater estimated probabilities in catego-
ries 3 and 4 (worse outcomes) and Treatment 2 had a greater estimated 
probability for category 1. The significant P value (0.014) reflects the dif-
ferences between treatments across all categories. Similar trends were 
seen at Time 1 and Time 2; however, as in continuous and binary analyses, 
improvements and differences between treatments at earlier times were 
less than at endpoint. 

10.4 Code Fragments

CODE FRAGMENT 10.1 SAS Code for a Pseudo Likelihood-
Based Analysis of Binary Data from the Small Example Data Set 

PROC GLIMMIX DATA=ONE PLOTS=ALL METHOD=RMPL;
NLOPTIONS MAXITER=50 TECHNIQUE=NEWRAP;
CLASS SUBJECT TRT TIME GENDER ;
MO DEL RESP = BASVAL TRT TIME BASVAL*TIME TRT*TIME / 

DIST=BINOMIAL LINK=LOGIT;
RANDOM TIME / SUBJECT=SUBJECT RESIDUAL TYPE=UN V VCORR;
LSMEANS TRT*TIME / diffs ILink;
ODS OUTPUT LSMEANS=_LSMEANS DIFFS=_DIFFS V=_V VCORR=_VCORR;

RUN;

TABLE 10.3

Generalized Estimating Equation-Based Results of Ordinal 
Data from the Small Example Data Set 

Time Category

Estimated Probabilities

P ValueaTreatment 1 Treatment 2

1 4 or worse 0.522 0.378
3 or worse 0.806 0.697

2 or worse 0.980 0.964 0.262

2 4 or worse 0.386 0.235
3 or worse 0.705 0.539

2 or worse 0.965 0.931 0.151

3 4 or worse 0.209 0.053
3 or worse 0.501 0.174

2 or worse 0.921 0.709 0.014

a Results on the original percentage scale are obtained by using the 
inverse link function. 
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CODE FRAGMENT 10.2 SAS Code for a Generalized 
Estimating Equation-Based Analysis of Binary 

Data from the Small Example Data Set 

PROC GENMOD DATA =ONE DESCENDING;
CLASS TRT TIME SUBJECT;
MODEL RESP=BASVAL TRT TIME BASVAL*TIME TRT*TIME 
/LINK=LOGIT DIST=BINOMIAL;
REPEATED SUBJECT=SUBJECT / TYPE=UN;
LSMEANS TRT*TIME / DIFFS ILINK; 
ODS OUTPUT LSMEANS=_LSMEANSG;
ODS OUTPUT DIFFS=_DIFFSG;

RUN;

CODE FRAGMENT 10.3 SAS Code for a Generalized 
Estimating Equation-Based Analysis of Multinomial 

Data from the Small Example Data Set 

PROC GENMOD DATA=ONE DESCENDING;
CLASS TRT TIME SUBJECT;
MODEL PGI= TRT TIME TRT*TIME / LINK = CLOGIT DIST=MULT;
REPEATED SUBJECT=SUBJECT / TYPE=IND;
LSMEANS TRT*TIME / DIFFS ILINK;

RUN;

10.5 Summary

Many of the modeling considerations and principles regarding longitudinal 
analysis of continuous outcomes also apply to categorical outcomes. However, 
one key difference is with regard to inference. Fixed effect para meters esti-
mated from a linear mixed-effects model in Gaussian data have both a mar-
ginal and hierarchical interpretation. In nonnormal data, these are different 
targets of inference because the link between the mean of the outcome variable 
and the covariates is not identity. Therefore, separate models are needed for 
marginal and hierarchical inference in categorical data.

Incorporating an appropriate link function to account for nonlinearity 
and an appropriate distribution for the errors in categorical data increases 
computational complexity. This complexity limits the implementation of 
certain models, especially for likelihood-based estimation. Therefore, gen-
eralized estimating equation-based analyses can be particularly useful in 
categorical data.
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11
Model Checking and Verification

11.1 Introduction

Important assumptions required for valid regression-type analyses of con-
tinuous outcomes include linearity, normality, and independence (Wonnacott 
and Winacott 1981). The first assumption is about the true form of the mean 
function and the last two assumptions are with regard to the error term. 
Errors (i.e., residuals) are the difference between observed and predicted 
values. Several options to account for correlation between repeated observa-
tions on the same subjects in mixed-effect model analyses were presented in 
Chapter 7. Options to account for nonlinearity were presented in Chapter 10. 

An inherent challenge in model checking—evaluating the mean struc-
ture and the errors—is that they are conditional on one another. Therefore, 
checking assumptions is typically an iterative process that entails refitting 
the model. For example, the errors may have some type of skewed distribu-
tion due to an incorrect mean model. After altering the mean model and 
refitting the model, the residuals can be rechecked. 

11.2 Residual Diagnostics

Outliers are anomalous values in the data that may have a strong influence 
on the fitted model, resulting in a worse fit for the majority of the data. 
Outliers typically increase the residual variance, thereby widening confi-
dence intervals and reducing power. Outliers may be due to errors in data 
collection and recording. These errors can be corrected. Examples include 
recording weight in pounds rather than kilograms, recording systolic blood 
pressure as diastolic blood pressure, etc. Therefore, checking for outliers 
can be a useful part of establishing the integrity of a database. 

Outliers not due to correctable errors may result from several causes. For 
example, if important fixed effects are not included in the model, then sam-
pling is in essence from a mixture distribution. Apparent outliers may also 
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result from sampling from a nonnormal distribution. Or a few outliers may 
exist because these values are unusual simply due to chance. 

Outliers may be detected in simple scatterplots of the data. However, more 
sophisticated approaches can be useful. Boxplots and the so-called Q–Q or 
normal probability plots for the residuals may be useful. Signs of nonnor-
mality include skewed (lack of symmetry), light-tailed, or heavy-tailed dis-
tributions. Although specific tests for normality exist, these tests may lack 
power in small data sets, and in large data sets statistically significant depar-
tures from normality may have a trivial impact. Therefore, the important 
issue to address is whether outliers had an important effect on results, not 
whether outliers or nonnormality existed.

Some general considerations for residual diagnostics include:

• If the residuals are from a normal distribution, normal probability 
plots should approximate a straight line, and boxplots should be 
symmetric, with the median and mean close together in the middle 
of the box. 

• If the normal probability plot is generally a straight line with a few 
points lying off that line, those points are likely outliers. 

• If both ends of the normality plot bend above the straight line, the distri-
bution from which the data were sampled may be skewed to the right. 

• If both ends of the normality plot bend below the straight line, the 
distribution from which the data were sampled may be skewed to 
the left. 

• If the right (upper) end of the normality plot bends below the straight 
line while the left (lower) end bends above that line (an S curve), the 
distribution from which the data were sampled may be light-tailed. 

• If the right (upper) end of the normality plot bends above the straight 
line while the left (lower) end bends below it, the distribution from 
which the data were sampled may be heavy-tailed.

Several types of residuals can be calculated. A raw residual is simply 
the difference between the observed and predicted value. A studentized 
residual is the raw residual divided by the standard deviation in residuals. 
A Pearson residual is the raw residual divided by the standard deviation in 
the observed values. 

11.3 Influence Diagnostics 

The general idea of quantifying the influence of one or more observa-
tions relies on computing parameter estimates based on all data points, 
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removing the case(s) in question from the data, refitting the model, and com-
puting statistics based on the change between the full-data and reduced-
data estimations. 

Influence statistics can be grouped by their primary target of estimation.

• Restricted likelihood distance is a measure of general change; that 
is, change in the overall objective function. 

• The influence on parameter estimates, such as treatment effects or 
other fixed effects can be assessed using Cook’s D.

• Influence on fitted and predicted values can be assessed using the 
PRESS residual and PRESS statistic. 

• Influence on precision of estimates can be evaluated using the 
CovRatio and CovTrace tests.

Additional details on these quantities and how they are calculated 
in  mixed-effect models can be obtained in the SAS documentation 
for  PROC  MIXED (SAS 2013). An example of how the measures can 
be  used  in practice is provided in Section 11.5 using the small example 
data set.

11.4 Checking Covariate Assumptions

In a simple regression setting, if the assumption of equal variance across 
values of the dependent variable is correct, the plot of the observed Y values 
against X should suggest a band across the graph with roughly equal verti-
cal width for all values of X. A pattern to the scatterplot with greater vertical 
spread at either the right or left end suggests that the variance in the values 
increases in the direction with greatest vertical spread. In such cases, a trans-
formation of the Y values might be useful. 

11.5 Example

A code fragment to implement residual and influence diagnostics in SAS 
is listed below. Results from the small example data set follow the code 
fragment. 



126 Analyzing Longitudinal Clinical Trial Data

CODE FRAGMENT 11.1 SAS Code for Implementing 
Residual and Influence Diagnostics

ODS GRAPHICS ON;
PROC MIXED DATA=ONE plot=all;
CLASS TRT TIME GENDER SUBJECT;
MODEL CHANGE= TRT TIME BASVAL TRT*TIME BASVAL*TIME /
INFLUENCE(EFFECT=SUBJECT ITER=5 estimates);
REPEATED TIME / SUBJECT=SUBJECT TYPE=UN;
ODS OUTPUT INFLUENCE=INFLUENCE;

RUN;
ODS GRAPHICS OFF;

Studentized residuals are plotted in Figure 11.1. The normal probability 
plot (lower left panel) shows both ends bending above the straight line, sug-
gesting the distribution is skewed to the right. This skewness is also sug-
gested by the plot of the studentized residuals (upper right panel). Pearson 
residuals (not shown) indicated the same pattern. 

Residual plots by treatment, time and treatment-by-time are depicted in 
Figures 11.2, 11.3, and 11.4, respectively. These plots reinforce the suggestion 
of some skewness to the distribution of residuals.
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FIGURE 11.1
Residual diagnostics based on studentized residuals from the small example data set.
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Restricted likelihood distances are plotted in Figure 11.5. Subject 47 had by 
far the greatest influence on the overall fit to the model, with Subject 4 stand-
ing out to a lesser degree.

To better understand how these influential subjects affected results, 
influence statistics for fixed effects and covariance parameters are plot-
ted in Figure 11.6. Subjects 4 and especially 47 were appreciably more 
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FIGURE 11.2
Distribution of residuals by treatment group from the small example data set.
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FIGURE 11.3
Distribution of residuals by time from the small example data set.
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Distribution of residuals for change
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FIGURE 11.4
Distribution of residuals by treatment group and time from the small example data set.
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FIGURE 11.5
Plot of restricted likelihood distances by subject from the small example data set.
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influential than other subjects for fixed effects, covariance parameters, 
and for precision in those estimates. 

Influence statistics for individual fixed effect parameters are also pro-
duced by the code in Code Fragment 11.1. However, plots are not shown here. 
Subject 47 had a large influence on almost every parameter. The influence of 
Subject 4 was less consistent. Influence statistics for individual covariance 
parameters are also produced by the code in Code Fragment 11.1. However, 
plots are not shown here. Deleting Subject 47 reduced variance at Times 2 
and 3, and deleting Subject 4 reduced variance at Time 1. 

Treatment lsmeans after deleting Subject 47 and Subject 4 are compared to 
results from including all Subjects in Table 11.1. Excluding Subject 4 slightly 
increased the treatment contrast, had little effect on the standard error, and 
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FIGURE 11.6
Influence statistics for fixed effects and covariance parameters from the small example data set.

TABLE 11.1

Comparisons of Endpoint Contrasts from All Data and Data 
with Influential Subjects Excluded

Data
Endpoint 

Treatment Contrast
Standard 

Error P Value

All data 3.39 1.49 0.0274
Excluding Subject 4 3.54 1.51 0.0234
Excluding Subject 47 4.55 1.31 0.0011
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resulted in a small decrease to the P value. Deleting Subject 47 resulted in a 
large increase in the treatment contrast and a decrease in the standard error. 
Therefore, the T statistic when excluding Subject 47 was much larger and the 
P value much smaller compared with results from including all subjects. 

If these were real data, the consequences of excluding Subject 47 would 
warrant additional investigation from a clinical perspective. In general, final 
inferences from confirmatory trials are based on results from including all 
randomized subjects. However, if this was an early phase or otherwise non-
confirmatory study, clinical considerations could warrant basing conclusions 
on data with Subject 47 excluded. Regardless of the scenario, it is important 
to know about influential subjects and how they influenced results.

The additional investigations might focus on subject history or other demo-
graphic or illness characteristics to verify whether the subject was indeed 
appropriate for inclusion in the study. If nothing anomalous was discovered, 
the subject may simply seem unusual because the data set was small and in 
a larger data set other subjects more similar to Subject 47 may be present.

For this example, results were statistically significant with or without 
Subject 47 included. Therefore, the anomalous profile of Subject 47 did not 
alter conclusions about the existence of a treatment effect. However, the dif-
ference in magnitude of the treatment effect could still be a consideration. 

11.6 Summary

Outliers are anomalous values in the data that may have a strong influence 
on the fitted model, resulting in a worse fit for the majority of the data. The 
important issue to address is whether outliers had an important effect on 
results, not whether outliers or nonnormality existed.

Checking for patterns of residuals, such as associations between residuals 
and covariates, helps ascertain whether or not the mean function is appropri-
ately specified; that is, are all the important effects fitted and is the modeled 
form of the association (linear etc.) correct? This emphasizes the iterative 
nature of model checking in that after identifying such patterns the model 
would be modified and refit, and the residuals reevaluated. 

Another important aspect of model checking is to assess the influence of 
clusters of observations on model fit. In clinical trials, the clusters of interest 
usually include subject and investigative site. The general idea of quantify-
ing the influence of clusters relies on computing parameter estimates based 
on all data points, removing the cases in question from the data, refitting the 
model, and computing statistics based on the change between the full-data 
and reduced-data estimations. Again, the main idea is not so much whether 
or not influential clusters existed, but rather to understand what impact the 
most influential clusters had on results.



Section III

Methods for Dealing 
with Missing Data

Missing data is an incessant problem in longitudinal clinical trials. 
The   fundamental problem caused by missing data is that the balance 
 provided by randomization is lost if, as is usually the case, the subjects who 
discontinue differ with regard to the outcome of interest from those who 
complete the study. This imbalance can lead to biases in the comparison of 
the treatment groups. 

Fortunately, missing data has been an active area of research, with many 
advances in statistical theory and in our ability to implement the theory. 
Section III focuses on statistical methods for dealing with incomplete data. 
However, missing data is a cross-functional problem that is best dealt with 
by preventing missing data. Therefore, other aspects of missing data, includ-
ing trial design and conduct to minimize missing data, were covered in 
Section I.

The focus in this section is to introduce various methods and their general 
attributes. How to use these various methods in developing a comprehen-
sive analysis plan is covered in Section IV. 
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12
Overview of Missing Data

12.1 Introduction

Missing data in longitudinal clinical trials is a complex and wide-ranging 
topic, in part because missing data may arise in many ways. Intermittent 
missing data occurs when subjects miss scheduled assessments but attend 
subsequent visits. Dropout (withdrawal, attrition) is when subjects miss 
all subsequent assessments after a certain visit. Intermittent missing data 
are generally less problematic than withdrawal/attrition because, having 
observed data bracketing the unobserved value makes it easier to verify 
assumptions about the missing data compared to when no subsequent val-
ues are observed.

In addition, values may be missing because a subject is lost to follow-up, 
with nothing known about treatment or measurements past the point of 
dropout. Alternatively, a subject may withdraw from the initially random-
ized study medication and be given an alternative (rescue) treatment, but 
with no further measurements taken. Or, follow-up measurements may con-
tinue after initiation of the rescue treatment. All these and other scenarios 
may happen within a single trial, with differing implications for analyses 
(Mallinckrodt and Kenward 2009). 

Importantly, missing data may need to be handled differently for different 
estimands. In addition, the consequences of missing values are situation-
dependent. For example, in a clinical trial for rheumatoid arthritis, if a sub-
ject is lost to follow-up halfway through the trial, some of the information 
needed to understand how well the drug worked for that subject is indeed 
missing. On the other hand, if the subject discontinued for lack of efficacy, it 
is known the drug was, at least in a global sense, not effective for that subject 
and no information is missing for that subject relative to global effective-
ness. However, other information regarding safety or secondary aspects of 
efficacy may be hindered by the incompleteness of the data. 

The following hypothetical data illustrates the ambiguity missing data 
can cause. Assume that Treatment 1 is an investigational medicine and 
Treatment 2 is the standard of care. Results for each subject are categorized 
as success or failure and the outcomes are summarized in Table 12.1.
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Success rates based on the observed data are 50% (35/70) for Treatment 
1 and 44% (40/90) for Treatment 2 (for ease of illustration, significance test-
ing is ignored). Therefore, if it is assumed that presence or absence of the 
observations was not related to the outcome, then the observed percentages 
reflect what would have been observed if data were complete, and Treatment 
1 would appear to have the greater success rate. In contrast, if it is assumed 
that all subjects with unknown outcomes were failures, then the success rate 
would be greater for Treatment 2 (35% vs. 40%). 

These results illustrate how missing outcomes can undermine the clarity 
and robustness of trial conclusions. According to one assumption the success 
rate for Treatment 1 was greater, but under another assumption Treatment 
2 was better. Drawing the proper inference depends on which assumption 
was most appropriate. However, assumptions about missing data cannot be 
evaluated from the available data because the data about which the missing 
data assumptions are made are missing (Verbeke and Molenberghs 2000). 

Despite the presence of missing data, a clinical trial may still be valid 
provided the statistical methods used are sensible (www.ich.org/cache/
compo/276–254-1.html). Carpenter and Kenward (2007) define a sensible 
analysis as one where:

 1. The variation between the intervention effect estimated from the 
trial and that in the population is random. In other words, trial 
results are not systematically biased.

 2. As the sample size increases, the variation between the intervention 
effect estimated from the trial and that in the population gets smaller 
and smaller. In other words, as the size of the trial increases, the esti-
mated intervention effect hones in on the true value in the popula-
tion. Such estimates are called consistent in statistical terminology.

 3. The estimate of the variability between the trial intervention effect 
and the true effect in the population (i.e., the standard error) cor-
rectly reflects the uncertainty in the data.

If these conditions hold, then valid inference can be drawn despite the 
missing data. However, the analyses required to meet these conditions 
may be different from the analyses that satisfy these conditions when 

TABLE 12.1

Hypothetical Trial Results (Number of 
Subjects by Outcome Category)

Treatment 1 Treatment 2

Success 35 40
Failure 35 50
Missing 30 10
Total 100 100
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no data are missing. Regardless, whenever data intended to be collected 
are missing, information is lost and estimates are less precise than if data 
were complete (Mallinckrodt 2013).

When drawing inference from incomplete data, it is important to recog-
nize that the potential bias from missing data can either mask or  exaggerate 
the true difference between treatments (Mallinckrodt et al. 2008; NRC 
2010). Moreover, the direction of bias has different implications in different 
scenarios. For example, underestimating treatment differences in efficacy 
is bias against an experimental treatment that is superior to control, but is 
bias in favor of an experimental treatment that is inferior to control. This 
situation has particularly important inferential implications in noninferi-
ority testing. 

Underestimating treatment differences in safety is bias in favor of an 
experimental treatment that is less safe than control, but is bias against the 
experimental drug that is safer than control.

12.2 Missing Data Mechanisms

In order to understand the potential impact of missing data and to choose 
an appropriate analytic approach for a particular situation, the stochastic 
process(es) (i.e., mechanisms) leading to the missingness must be considered. 
The following taxonomy of missing data mechanisms is now well-established 
in the statistical literature (Little and Rubin 2002). 

Data are missing completely at random (MCAR) if, conditional upon 
the covariates (e.g., treatment group, baseline severity, investigative site) in 
the analysis, the probability of missingness does not depend on either the 
observed or unobserved outcomes of the variable being analyzed. 

Data are missing at random (MAR) if, conditional upon the covariates in 
the analysis and the observed outcomes of the variable being analyzed, the 
probability of missingness does not depend on the unobserved outcomes of 
the variable being analyzed. 

Data are missing not at random (MNAR) if, conditional upon the covari-
ates in the analysis model and the observed outcomes of the variable being 
analyzed, the probability of missingness does depend on the unobserved 
outcomes of the variable being analyzed. Another way to think about MNAR 
is that if, conditional on observed outcomes, the statistical behavior (means, 
variances, etc.) of the unobserved data is equal to the behavior had the data 
been observed, then the missingness is MAR; if not, then MNAR.

With MCAR, the outcome variable is not related to the probability of 
 dropout (after taking into account covariates). In MAR, the observed val-
ues of the outcome variable are related to the probability of dropout, but 
the unobserved outcomes are not (after taking into account covariates and 
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observed outcome). In MNAR the unobserved outcomes are related to the 
probability of dropout even after the observed outcomes and covariates 
have been taken into account. 

The practical implications of the distinction between MAR and MNAR 
is best appreciated by example. Consider a clinical trial where subjects are 
assessed every 4 weeks for 24 weeks, and a subject had clinically mean-
ingful improvement during the first 12 weeks. Subsequent to the Week-
12 assessment the subject had a marked worsening and dropped out. If 
the subject was lost to follow-up and there was no Week-16 observation 
to reflect the worsened condition, the missingness was MNAR. If the 
Week-16 observation was obtained before the subject dropped out, it is 
possible the missingness was MAR (provided the outcomes were incorpo-
rated in the analysis model). Note that this example illustrates what hap-
pens on average under the two mechanisms. With the stochastic nature of 
the missingness processes, it is impossible to claim with certainty whether 
missingness for a particular subject was driven by an MAR or MNAR 
mechanism. 

Mallinckrodt et al. (2008) summarized several key points that arise from 
the precise definitions of the missingness mechanisms given above. First, 
given that the definitions are all conditional on the model, characterization 
of the missingness mechanism does not rest on the data alone; it involves 
both the data and the model used to analyze them. Consequently, miss-
ingness that might be MNAR given one model could be MAR or MCAR 
given another. In addition, since the relationship between the dependent 
variable and missingness is a key factor in the missingness mechanism, 
the mechanism may vary from one outcome to another within the same 
data set. 

Moreover, when dropout rates differ by treatment group, it would be 
incorrect to conclude on these grounds alone that the missingness mecha-
nism was MNAR and that analyses assuming MCAR or MAR were invalid. 
If dropout depended only on treatment, and treatment was included in the 
model, the mechanism giving rise to the dropout was MCAR. This is one 
example of what some have termed covariate-dependent MCAR (Little 1995; 
O’Kelly and Ratitch 2014). The distinction between covariate-dependent 
MCAR and MCAR applies to all covariates, not just treatment. 

Given that the missingness mechanism can vary from one outcome to 
another in the same study, and may depend on the model and method, state-
ments about the missingness mechanism without reference to the model and 
the variable being analyzed are problematic to interpret. This situational 
dependence also means that broad statements regarding missingness, and 
validity of particular analytic methods across specific disease states are 
unwarranted (Mallinckrodt 2013).

Moreover, terms such as ignorable missingness can also be problem-
atic to interpret. For example, in the case of likelihood-based estimation, 
if the parameters defining the measurement process (i.e., governing the 
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distribution of both observed and missing outcomes) are independent of the 
parameters defining the missingness process (this condition sometimes is 
referred to as the separability or distinctness condition), the missingness is 
ignorable if it arises from an MCAR or MAR mechanism but is nonignorable 
if it arises from an MNAR process (Verbeke and Molenberghs 2000). 

In this context, ignorable means the missing-data mechanism need not be 
modeled because unbiased estimates of the parameters governing the mea-
surement process can be obtained from the maximum likelihood analysis 
of observed data. However, if other forms of estimation are used, missing 
data may be ignorable only if arising from an MCAR mechanism. Hence, 
if missing data are described as ignorable or nonignorable, this must be 
done with reference to both the estimation method and the analytic model 
(Mallinckrodt 2013). 

Informative censoring is yet another term used to describe the attributes of 
missing data. Censoring is best understood in the context of survival analy-
ses. If the response variable was time to an event, subjects not followed long 
enough for the event to occur have their event times censored at the time 
of last assessment. It is often assumed in survival time analyses that what 
caused a subject to be censored is independent of what would cause her/
him to have an event. This assumption is often taken after conditioning on 
available baseline covariates or strata, such as in a Cox proportional hazards 
regression model. If the outcome is related to the likelihood of censoring, 
conditional on available covariates, informative censoring is said to have 
been present. For example, if subjects discontinue because of poor response 
to treatment but did not yet have the event of interest, the censoring times 
indirectly reflect bad outcomes. Thus, the censoring is said to be informa-
tive. Analogously, the censoring can be said to be not at random because the 
statistical behavior or distribution of event times for censored patients is not 
equal to that of uncensored patients. 

However, an important consideration differentiates informative cen-
soring in the survival time setting from the repeated measures setting. In 
survival time settings, typically there is one observation of the analyzed 
outcome (event time) per subject; no intermediate observations exist. In lon-
gitudinal settings with repeated measures, most subjects will have at least 
partially observed sequences. With repeated measurements, for censoring 
(dropout) to be informative, this must be in addition to what is known from 
the observed outcomes. With no intermediate observations included in the 
model in the survival time setting, it is more likely censoring would be infor-
mative than in an otherwise similar scenario where analyses can condition 
on the intermediate observations. Simply put, MAR (noninformative censor-
ing) is more likely valid with intermediate observations in a repeated mea-
sures setting. In survival time settings, these intermediate observations are 
often not included in analysis.

Throughout the remainder of this book, missing data are described via the 
mechanism giving rise to the missingness (Mallinckrodt 2013).
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12.3 Dealing with Missing Data

12.3.1 Introduction

Dealing with missing data is of course in part an analytic problem. However, 
the best way to deal with missing data is to prevent it (NRC 2010; Fleming 2011; 
Mallinckrodt 2013; O’Kelly and Ratitch 2014). A comprehensive approach to 
the prevention and treatment of missing data involves three pillars: (1) set-
ting clear objectives and defining the causal estimands; (2) minimizing the 
amount of missing data; and, (3) defining an appropriate primary analysis 
supported by plausible sensitivity analyses (Mallinckrodt et al. 2014). 

Minimizing missing data was covered in Chapter 3. Objectives and esti-
mands were discussed in Chapter 2. Recall that some estimands can be 
formulated such that early discontinuation from treatment or initiation of 
recuse treatment are considered an outcome and do not result in missing 
data, whereas for other estimands discontinuation or rescue result in miss-
ing data. This chapter and Part III of the book focuses on the second situ-
ation. The remainder of this chapter introduces key concepts in analysis 
of incomplete data. Details on specific analyses are covered in subsequent 
chapters. 

12.3.2 Analytic Approaches

Missing data can be dealt with by: 

 1. Ad hoc (single) imputation approaches (e.g., imputation with last 
observed values)

 2. Ignoring the missing data
 3. Accounting for the missing data via principled approaches to impu-

tation, likelihood-based analyses, or weighting the observed values 
to adjust for the probability of dropout

 4. Jointly modeling the outcome variable and the missingness process

Until recently, guidelines for the analysis of clinical trial data provided only 
limited advice on how to handle missing data, and analytic approaches 
tended to be simple and ad hoc (Molenberghs and Kenward 2007). Simple 
and ad hoc methods became popular during a time of limited computing 
power because they restored the intended balance to the data, allowing 
implementation of the simple analyses for complete data. However, with 
the seminal work on analysis of incomplete data by Rubin (1976), including 
the now common taxonomy of missingness mechanisms, attention began to 
shift to accounting for the potential bias from missing data.

Nevertheless, widespread use of simple methods for dealing with missing 
data set historical precedent that fostered their continued acceptance even 
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after alternative methods were well known. In regulatory settings, meth-
ods like baseline observation carried forward (BOCF) and last observation 
carried forward (LOCF) remained popular choices for the primary analysis 
long after more principled alternatives could be easily implemented with 
commercial software (Mallinckrodt 2013). 

In addition to historical precedent, continued acceptance of LOCF and 
BOCF despite strong evidence of their shortcomings was also fostered by the 
belief that these methods led to conservative estimates of treatment effects. 
Conservative in this context means not favoring the treatment; that is, under-
estimating the advantage of treatment over control. Hence, even though it 
became well known that imputing missing data via LOCF or BOCF yielded 
biased estimates of treatment effects, that bias was considered appropriate 
for confirmatory clinical trials of medical interventions because the bias 
was thought to provide protection against erroneous approval of ineffective 
interventions (Kenward and Molenberghs 2009). 

However, as detailed in Chapter 13, the conditions under which LOCF and 
BOCF yield conservative estimates and maintain control of Type I error rates 
are not straightforward and cannot be assured at the start of the trial. Not 
surprisingly, LOCF and BOCF are now generally not seen as suitable for use 
as a primary analysis (Molenberghs and Kenward 2007; Mallinckrodt et al. 
2008; NRC 2010; O’Kelly and Ratitch 2014). 

For an analysis to yield unbiased results when ignoring missing data, 
the missingness must typically arise from an MCAR mechanism. One 
notable exception to the requirement of MCAR for ignorability is direct 
likelihood analyses, which can be valid under the far less restrictive 
assumption of MAR. Part II of this book described many aspects of direct 
likelihood analyses. Chapter 14 provides further detail on how likelihood-
based analyses can ignore missing data that arise from an MCAR or MAR 
mechanism. 

Multiple imputation has several variations, but the key idea is to impute 
the missing values using a likelihood-based model, combine the actually 
observed and imputed values to create a complete data set, analyze the now 
complete data, and repeat the process multiple times. Results are combined 
across data sets for final inference in a manner that takes into account the 
uncertainty due to missing data. More details on multiple imputation are 
provided in Chapter 15. 

Inverse probability weighting is another MAR approach wherein a specific 
model is used to estimate the probability of dropout given the observed data. 
The inverse of these probabilities are applied to the observed data to create 
a pseudo-sample reflecting what would have been observed if no data were 
missing. Chapter 16 includes additional theoretical details and specifics on 
implementing inverse probability weighting. 

Jointly modeling the outcome of interest and the dropout process typically 
involves MNAR analyses. Chapter 18 includes additional theoretical details 
and some implementation specifics on MNAR methods. 
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The analytic conundrum missing data pose is that MCAR is usually not a 
reasonable assumption, MAR may be reasonable but there is no way to know 
for certain, and there is no way to be certain that an MNAR method and 
model is appropriate (Mallinckrodt 2013). A sensible compromise between 
blindly shifting to MNAR models and ignoring them altogether is to use 
MNAR methods in sensitivity analyses (Molenberghs and Kenward 2007; 
Mallinckrodt et al. 2008). Indeed, broad consensus has emerged indicat-
ing that the primary analyses of longitudinal clinical trials should often be 
based on methods that assume MAR, and that robustness of the MAR result 
should be assessed using sensitivity analyses (Verbeke and Molenberghs 
2000; Molenberghs and Kenward 2007; Mallinckrodt et al. 2008; Siddiqui 
et al. 2009; NRC 2010; Mallinckrodt et al. 2014). 

12.3.3 Sensitivity Analyses

Sensitivity analyses can be a single analysis or a series of analyses with dif-
fering assumptions. The aim is that by comparing results across sensitivity 
analyses it becomes apparent how much inferences rely on the assumptions 
(NRC 2010; Phillips et al. 2016). In longitudinal clinical trials, sensitivity anal-
yses typically focus on inferences regarding the treatment effects. Therefore, 
a primary aim of sensitivity analyses is to assess how treatment effects vary 
depending on assumptions about the missing data. 

Sensitivity analyses in principle can be used for any analytic assumption. 
However, it is useful to distinguish between testable and nontestable assump-
tions. Assumptions regarding covariance between repeated measurements, 
mean trends over time, distribution of residuals, etc. can be tested from the 
observed data. In contrast, the fundamental sensitivity task for missing 
data will often center on the distinction between MAR and MNAR mecha-
nisms; however, a formal data-based distinction between MAR and MNAR 
is not possible because each MNAR model fit to a set of observed data can 
be reproduced exactly by an MAR counterpart (Molenberghs and Kenward 
2007). Of course, such a pair of models will produce different predictions of 
the unobserved outcomes, given the observed outcomes.

That is, it is not possible to distinguish MAR versus MNAR in practice 
(NRC 2010; Mallinckrodt et al. 2014). Therefore, the aim of sensitivity analy-
ses for missing data is typically to evaluate the degree to which inferences 
are influenced by departures from MAR. Departure from MAR is typically 
quantified via one or several sensitivity parameters. Unlike parameters that 
can be estimated from observed data, there is no information in the observed 
data about the missing data sensitivity parameters. Therefore, the sensitivity 
parameters are typically chosen by the analyst in order to create a relevant 
departure from MAR from which results can be compared to the MAR result 
(Carpenter et al. 2013). 

It is important to keep missing data sensitivity analyses within the overall 
context of assessing uncertainty in clinical trial results. This uncertainty arises 
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from different sources: (1) inherent imprecision in parameters of the model 
estimated from a finite sample; (2) model selection (e.g., for the mean and 
covariance functions); and, (3) the level of uncertainty due to incompleteness. 
Sources 1 and 2 can be assessed from the observed data. What sets missing 
data apart is that uncertainty from incompleteness cannot be objectively evalu-
ated from observed data. Hence, the need for missing data sensitivity analyses 
(Molenberghs and Kenward 2007).

12.3.4 Inclusive and Restrictive Modeling Approaches 

Collins et al. (2001) describe restrictive and inclusive modeling philosophies. 
Restrictive models typically include only the design factors of the experi-
ment, and perhaps one or a few covariates. Inclusive models include, in addi-
tion to the design factors, auxiliary variables whose purpose is to improve 
the performance of the missing data procedure. 

Recalling the specific definition of MAR provides rationale for inclusive 
modeling. Data are MAR if, conditional upon the variables in the model, 
missingness does not depend on the unobserved outcomes of the variable 
being analyzed. Therefore, if additional variables are added to the model 
that explains missingness, MAR can be valid; whereas if the additional vari-
ables are not included, the missing data would be MNAR. 

Ancillary variables can be included in likelihood-based analyses by either 
adding the ancillary variable as a covariate or as an additional response to 
 create a multivariate analysis. However, the complexity of multivariate analy-
ses and the features of most commercial software make it easier to use ancil-
lary variables via MI. With separate steps for imputation and analysis, 
post- baseline, time-varying covariates—possibly influenced by treatment—
can be included in the imputation step of MI to account for missingness but 
then not included in the analysis step to avoid confounding with the treat-
ment effects, as might be the case in a likelihood-based analysis.

12.4 Summary

Missing data is an incessant and complex problem in longitudinal clinical 
trials. Dealing with missing data is in part an analytic problem. However, 
the best way to deal with missing data is to prevent it. A comprehensive 
approach to the prevention and treatment of missing data involves setting 
clear objectives and defining the causal estimands, minimizing missing 
data, and having an appropriate primary analysis supported by plausible 
sensitivity analyses. 

The potential impact of missing data is dependent on the underlying 
mechanism. In MCAR, neither the observed nor the unobserved data are 
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related to the probability of dropout. This situation is unlikely in most 
clinical trial scenarios. There are two ways to think about the less restric-
tive MAR mechanism: (1) the missingness does not depend on missing data 
given observed data and (2) the distribution of unobserved future outcomes 
is the same as the distribution of observed future outcomes, conditional on 
earlier outcomes. If these conditions do not hold, then data are MNAR.
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13
Simple and Ad Hoc Approaches for 
Dealing with Missing Data 

13.1 Introduction 

This chapter provides an overview of simple and ad hoc methods of deal-
ing with missing data in longitudinal clinical trials. These methods are 
generally not recommended for use but are of historic interest and pro-
vide a useful starting point from which to differentiate the more principled 
methods described in subsequent chapters. It is assumed throughout this 
chapter that the estimand of interest is the treatment effect that would have 
been estimated in an infinitely large trial with no missing values; that is, 
estimand 3 as introduced in Table 2.1, the de jure (efficacy) estimand. Focus 
is on the difference between treatments in mean change from baseline to 
endpoint.

In this context, the complete data set is a random sample of subjects from 
the hypothetical infinitely large trial of all subjects. Therefore, evaluation 
of treatment effects from complete data (even using simple estimators such 
as the two sample t-test comparing unadjusted sample means) provides 
unbiased estimates of that estimand. In fact, this consideration motivates 
use of estimates from complete data as valid benchmarks for performance 
of methods applied to incomplete data. Bias in methods is with respect to 
the above estimand, understanding that a method with bias for this esti-
mand may provide unbiased results for a different estimand. Methods are 
illustrated using the small example data set with dropout (see Section 4.3). 
Results from the various methods applied to the incomplete data are bench-
marked against results from the corresponding complete data set.

As detailed in Section 4.3, missing data were created by applying to the 
complete data an MAR missingness process with the probability of drop-
out depending on the observed outcomes. Only monotone missingness pat-
terns were generated; that is, if a subject had a missing value at a time = t all 
assessments at time > t were also missing.
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Figure 13.1 illustrates incomplete and complete outcome profiles of four 
subjects (#1, #9, #30, and #49) that were selected to represent different 
response and missingness patterns. These subjects are used as case studies 
to illustrate features of each analytic approach. 

13.2 Complete Case Analysis

In complete case analysis (also known as observed case or completers analy-
sis) subjects with one or more missing values for the outcome being analyzed 
are discarded from the data set. Only subjects with complete data for the 
outcome being analyzed are included.

Completers analyses have serious drawbacks. The subset of subjects that 
complete the trial is seldom a random subset. For example, subjects with 
poor outcomes are often more likely to discontinue. In other words, the miss-
ing data seldom arise from an MCAR mechanism. In essence, including only 
completers creates selection bias. This bias typically causes overestimation 
of within group effects, particularly at the last scheduled visit.

When the selection process is the same for each treatment arm such that the 
bias to within-group point estimates is the same, this results in an unbiased 

–25

–20

–15

–10

–5

0

5

Visit

M
ea

n 
ch

an
ge

 fr
om

 b
as

el
in

e

0 1 2 3

Placebo
Drug
Sub#1
Sub#9
Sub#30
Sub#49

FIGURE 13.1
Response and missing data profiles for four selected patients. Solid lines are the observed out-
comes and dotted lines show “unobserved” outcomes from complete data that were deleted to 
create the incomplete data. 
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estimate of the difference between treatments. However, such an assumption 
is difficult to justify a priori, especially when comparing active medications 
to placebo. If for example efficacy differs by treatment and efficacy influences 
adherence, the amount of selection bias will differ by treatment group, lead-
ing to a bias in the treatment contrast when analyzing completers. Moreover, 
even if the bias in change to last visit cancelled out between treatment groups, 
other aspects of the analysis are likely biased. For example, the completers 
are likely a more homogenous group than the initially randomized cohort of 
subjects, leading to underestimation of variance, which, in turn, leads to stan-
dard errors that are too small, confidence intervals that are too narrow, and 
test statistics that are biased toward inferences that the groups differ. 

Setting aside the issue of bias, analyzing only completers results in a prob-
lematic loss of information because subjects who discontinued the trial are 
ignored. The partial information from incomplete sequences can still be 
valuable in estimating treatment effects. For example, if a subject discontin-
ued just before the last scheduled visit t, his/her observed outcomes up to 
visit t−1 provide relevant information that could be utilized (“borrowed”) for 
estimating the treatment effect at visit t. 

As an illustration, consider the following simple, hypothetical scenario. 
Assume that the distribution of the change in efficacy scores from base-
line to the last scheduled visit is normally distributed with means μA = −13 
and μB = −10 for Drug A and Drug B (a larger negative change indicates 
greater improvement). Further assume a common standard deviation σ = 5. 
Therefore, the true treatment contrast (B–A) for the complete data = 3. 

Now assume that subjects discontinue and therefore miss the final assess-
ment with probability 1 if their change score is above the threshold value 
k = −10. The observed data at the last visit will follow a truncated normal dis-
tribution within each treatment arm with the mean given by the expression: 

µ − σφ − µ
σ





 Φ − µ

σ






k k
, where ϕ(.) and Φ(.) are standard normal PDF and 

CDF, respectively. These new means are about −15.3 for Drug A and −14.0 
for Drug B, resulting in a treatment difference of 1.3 versus the difference of 
3.0 for the complete data. The truncation causes a shift in the within-group 
means toward better outcomes. The impact of truncation is not the same in 
both groups; it is greater in the group with worse efficacy. In real clinical trial 
scenarios, discontinuations likely result from complex stochastic process(es). 
However, this simple example illustrates how dropouts due to lack of effi-
cacy would differentially exaggerate observed efficacy within each treatment 
arm, thus inducing bias (likely dilution) in the contrast between treatments.

Figure 13.2 plots visit-wise least squares means from the small example 
data set with dropout based on the subset of subjects who completed Time 
3 (solid lines) compared to the benchmark from complete (full) data (dot-
ted line). The “complete case” estimates are those at the last visit (Time 3). 
Estimates were obtained using ANCOVA for visit-wise changes from base-
line with treatment and baseline value as covariates in the model. 
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In this example, visit-wise means for the active treatment arm (Treatment 2) 
are not affected much by dropouts, whereas in the placebo arm the means for 
completers consistently deviate from those based on complete data, indicat-
ing selection bias and dilution of the treatment contrast at the last visit.

13.3  Last Observation Carried Forward 
and Baseline Carried Forward

Last observation carried forward (LOCF) and baseline observation carried 
forward (BOCF) are methods for nonstochastic imputation. For subjects with 
monotone patterns of missing values, the outcomes are imputed using their 
earlier observed values. As the names imply, LOCF imputes all missing val-
ues for each subject using the last observed value for that subject and BOCF 
imputes all missing values for each subject using the baseline value for that 
subject.

Typically, when LOCF and BOCF are used the repeated measures nature 
of the data is ignored and a single outcome for each subject is analyzed. 
As initially noted in Chapter 12, use of LOCF and BOCF was in part justi-
fied because these methods were thought to provide conservative estimates 
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of treatment effects and/or to be a composite measure of effectiveness that 
combined aspects of efficacy, safety, and tolerability. However, particularly 
LOCF can be considered as pursuing different estimands rather than as 
imputation methods for estimating treatment effects in the sense of a de jure 
(efficacy) estimand. Focus here is on estimates of efficacy.

If subjects on Drug A discontinue from a trial because of the side effects 
prior to achieving full benefit from the drug, their last observed values for 
efficacy outcomes would tend to be worse compared to those that would 
have been observed had the subjects remained in the trial until the last 
assessment. Carrying baseline values forward would often be a more conser-
vative imputation because subjects who discontinued at any time, even one 
visit prior to end of the study, would be considered to have had no change. 

Figure 13.3 plots the “visit-wise” LOCF and BOCF estimates by treatment 
arm as well as the benchmark estimate from the complete data set (shown as 
dotted line). All estimates are based on an ANCOVA model with treatment 
and baseline score as covariates. The estimates at visit (Time) 3 are what 
would be computed as the final LOCF or BOCF estimate of treatment effect. 
In the example, LOCF and BOCF yield smaller mean changes over time com-
pared with the complete data reference. 

Although it seems reasonable to consider LOCF and BOCF as providing 
conservative estimates of within-group mean changes, the impact on treat-
ment contrasts is less clear. This lack of clarity on the direction of bias from 
LOCF and BOCF is compounded by the fact that these methods consistently 
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underestimate the variance. In fact, the power and Type I error rate control 
provided by LOCF and BOCF when assessing treatment contrasts is dif-
ficult to predict (Molenberghs et al. 2004). Many studies have shown that 
LOCF and BOCF can inflate treatment contrasts and markedly increase the 
rate of false- positive conclusions (Molenberghs et al. 2004; Lane et al. 2007; 
Barnes et al. 2008; Mallinckrodt et al. 2008; Sidiqui et al. 2009). Not surpris-
ingly, the expert panel on missing data, convened at the request of FDA, 
stated that LOCF and BOCF are generally not appropriate means of dealing 
with missing data (NRC 2010). 

Although it is not possible to be certain of the direction of bias, situations in 
which LOCF and BOCF are likely to overestimate treatment benefit include:

• When dropout in the control group is more frequent. 
• When the difference between treatments is greatest at intermediate 

assessments. This bias would occur even if missingness were com-
pletely at random. 

• In studies where the treatment goal is to maintain rather than 
improve outcomes. 

• If LOCF and BOCF indeed provided a smaller estimate of the dif-
ference between treatments, this would not be conservative for 
safety outcomes. For example, if a drug causes weight gain, LOCF 
and BOCF will underestimate the magnitude of this unwanted 
side-effect.

• In noninferiority (NI) studies the null hypothesis is that the new 
treatment is worse than the standard treatment by a certain pre-
specified amount (the noninferiority or Δ margin). Underestimating 
the difference between treatments in an NI study would be a bias in 
favor of the experimental arm.

• More generally, underestimating the inferiority of the inferior treat-
ment would not be conservative. 

13.4 Hot-Deck Imputation

Another single imputation approach is the so-called hot-deck method. Hot 
deck is of less historical interest, because it was not used as frequently in 
clinical trials as LOCF and BOCF. However, hot-deck imputation is useful 
to introduce, because it starts the movement toward more principled impu-
tations. In hot-deck imputation, values are imputed by borrowing from an 
appropriate complete case (or donor case) that is in some sense similar to the 
missing case (Molenberghs and Kenward 2007). 



149Simple and Ad Hoc Approaches for Dealing with Missing Data 

Finding the appropriate donor for each subject with missing data involves 
finding the donor who is most similar. In longitudinal clinical trial data sim-
ilarity can be based on observed outcomes and baseline covariates. Donors 
can also be matched based on estimates for the probability of dropout. 
The donor can be the subject with nonmissing outcomes whose estimated 
probability of being observed is closest to that of the subject with missing 
value(s). The model used to assess the probabilities can be fit using a logistic 
regression of the form Pr(R = 1|X,Yobs).

In general, missingness must arise from an MCAR mechanism for hot-deck 
imputation to yield unbiased estimates of treatment effects. Besides, sim-
ple hot-deck methods typically underestimate standard errors of estimated 
treatment effects. Therefore, hot-deck imputation will not usually be valid, 
but the idea that imputation can be based on borrowed information is central 
to more principled approaches discussed in subsequent chapters. 

13.5 Single Imputation from a Predictive Distribution 

The approach illustrated in this section is not of historical interest, because 
it was not commonly used in clinical trials. However, this approach illus-
trates some key aspects of the more principled methods of analyzing 
incomplete data that are discussed in subsequent chapters. The approach 
takes a data set with missing values and makes it complete by imputing 
missing observations using a predictive model that is based on data from 
the longitudinal profiles of all subjects. The imputed-complete data set is 
then analyzed using a model that would have been appropriate had there 
been no missing data. 

Recall that single imputation approaches do not account for the uncer-
tainty in the imputation, resulting in underestimation of standard errors. 
Fundamental concepts in accounting for the uncertainty of imputation will 
be illustrated by introducing randomness in the predicted values; that is, 
imputed values are drawn from a distribution. Such an approach would be 
valid under MCAR and MAR if the imputation model properly accounted 
for the correlations between the repeated measurements within subjects.

A relatively straightforward way to implement this procedure is to first 
estimate the visit-wise marginal means for each treatment arm and the 
unstructured covariance matrix by fitting to the data an appropriate direct 
likelihood model, such as those described in Section II. Then, imputed val-
ues can be generated from the conditional normal distribution. A better 
approach would be to use subject-specific marginal means adjusted for base-
line severity and other covariates, but for illustration the simpler imputation 
model is used here. 
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To obtain imputed values for a subject with missing data at Visits (Times) 2 
and 3, such as placebo Subject #49 (see Figure 13.4), generate outcomes from 
the conditional distribution, f (y2, y3|y1), which is a bivariate normal distribu-
tion N (μ*, Σ*), with the mean vector μ* and covariance matrix Σ* given by
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where μ1, μ2, μ3 are marginal means at Times 1, 2, and 3 for the placebo arm, Σ23 
is the 2 × 2 error covariance matrix for Times 2 and 3, and Σ23,1 = (σ21, σ31) is a 
2 × 1 vector with covariances between Times 2 and 1, and 3 and 1, respectively. 

To obtain imputed values for a subject with missing data at Visit (Time) 3, 
such as Subject #30 (see Figure 13.4), generate imputed values from the con-
ditional distribution f(y3|y1, y2) which is univariate normal with the mean μ* 
and variance σ*2 given by
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FIGURE 13.4
Illustration of single imputation from a predictive distribution for selected subjects. Subjects 
#1, #30, and #49 with observed data (solid lines), conditional means (dotted lines), and imputed 
values (asterisks). Treatment mean profiles (thick lines) are estimated via direct likelihood.
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Predictive distributions for each missing value are obtained by replac-
ing all these elements in the expressions for μ* and Σ* by the correspond-
ing estimates from an appropriate likelihood-based analysis, resulting in the 
numerical values shown in the above equations. 

Figure 13.4 plots the observed values and conditional means for the visits 
when the outcomes were unobserved for Subjects 1, 30, and 49. 

The following observations and comments can be made 

• The imputation model based on the conditional normal distri-
butions estimated from the observed data likelihood effectively 
assumes that the distribution of future outcomes given earlier 
outcomes for subjects with observed future outcomes is the same 
as for those with missing future outcomes. This is equivalent to 
an MAR mechanism. Therefore, the point estimates from analy-
sis of completed data with imputed missing values is consistent 
under MAR.

• The equality of the conditional distributions of missing and observed 
values given earlier values arises from use of marginal means and 
covariances estimated from the maximum likelihood analysis of 
observed data. Had estimates of the marginal means and covari-
ances been obtained from a complete case analysis rather than a 
maximum likelihood analysis of all observed data, the imputa-
tion model would essentially reproduce the complete case analysis 
inducing similar biases in the final point estimates as the complete 
case analysis.

• Assuming positive within-subject correlations, which is typically 
the case, subjects whose observed outcomes were better than their 
treatment mean would also have conditional means better than the 
group mean for the future time points. That is, better (worse) than 
average outcomes at past visits predict better (worse) outcomes at 
future visits. For example, Subject 1 from the drug-treated group 
had greater change than the group mean at the time of discontinua-
tion. The conditional means for Subject 1 were greater than the cor-
responding treatment group means. Similarly, placebo Subjects 30 
and 49 were worse than (smaller changes) the corresponding group 
mean at the time of discontinuation and the projections for out-
comes at future visits were worse (smaller changes) than the group 
means. 

• Consistent with the weaker correlations between observations 
more distant in time, predicted individual conditional means 
get closer to the group mean (greater shrinkage) as the observa-
tion and the prediction time get farther apart. Refer to Section 5.4 
for detailed explanation of how variance components influence 
shrinkage.
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• Also consistent with the weaker correlations between observations 
more distant in time, the conditional distribution has greater vari-
ance as the time between the observation and the prediction time 
get more distant from each other. This makes intuitive sense in that 
when the source of information (the observed data) is more weakly 
correlated with what is to be predicted there is greater uncertainty 
in the prediction. In the example above, the conditional error vari-
ances for imputing outcomes at Time 3 using the data from Time 1 
and Time 2 was 12.7 and the variance for imputing the Time 3 using 
only Time 1 was 18.6.

To further explain, consider a simple regression model with a single post-
baseline outcome, y1 regressed on baseline score y0. Further assume equal 
 variances σ2 = (σ1)2 = (σ0)2. The conditional mean E(Y1|Y0 = y0) is μ1|0 = μ1 + 
ρ(y0 − μ0). Therefore, the marginal mean μ1 is adjusted by an additive term 
ρ(y0 − μ0). Assuming that within-subject error correlation (ρ) between the first 
and the second time points is positive, the adjustment would be positive or 
negative depending on whether the observed value y0 was above or below 
the mean μ0. The amount of adjustment is shrunk closer to zero by the factor 
of |ρ| ≤ 1. For example, no adjustment would be made if ρ = 0 (no within-
subject  correlation). The conditional variance σ2(1 −  ρ2) is smaller than the 
unconditional variance σ2 by a factor (1 − ρ2) ≤ 1. However, this factor will get 
closer to 1 with weaker within-subject correlation, such as when the future 
and observed time points are farther apart. 

Once the missing values have been imputed, a completed data set is 
obtained and could be analyzed via standard complete data techniques. As 
previously noted, the point estimates from such an imputation strategy will 
be correct if the imputation model is based on consistent estimates of means 
and error covariance from the repeated measures likelihood. 

Adding random noise to the predicted values when carrying out impu-
tation (rather than taking the conditional mean for the predicted value 
“as  is”) adjusts the variance to account for the uncertainty due to imputa-
tion. However, standard errors would still be calculated with imputed values 
treated as observed values. This effectively assumes a larger sample size than 
that which was actually observed, resulting in artificially reduced standard 
errors that reflect greater precision than was actually the case. Although 
resampling methods (e.g., jackknife or bootstrap) could be used to obtain 
valid estimates of standard errors, the key concept for the present purpose 
is that single imputation, combined with standard estimators of standard errors, 
results in invalid inference.

An obvious question is why estimate treatment effects by imputing miss-
ing outcomes from a likelihood-based model when treatment effects can be 
estimated using the same assumptions directly from the likelihood model 
without imputation? In fact, the method illustrated in this subsection is of 
little practical value, but it is important for illustrating two key points. First, 
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imputing from the conditional normal distribution serves as a building block 
for more principled methods such as multiple imputation. And, as illustrated 
in Chapter 15, there are situations when breaking the estimation process into 
two steps: (1) generating a complete data set by imputing missing values 
and (2) estimating treatment effects from completed data may have advan-
tages over directly estimating treatment effect from a single model applied 
to incomplete data.

13.6 Summary

The simple and ad hoc methods of dealing with missing data discussed in 
this chapter are generally not recommended for use. Nevertheless, the meth-
ods are of historic interest and provide a useful starting point from which to 
differentiate the more principled methods described in subsequent chapters. 
In particular, single imputation from a predictive distribution provides an 
important stepping stone for understanding multiple imputation and direct-
likelihood analyses. 
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14
Direct Maximum Likelihood

14.1 Introduction

If missing data arise from an MCAR or MAR mechanism, a likelihood-based 
analysis can yield unbiased estimates and valid inferences from the available 
data such that the missing data can be ignored. With GEE and least squares 
estimation, for the missingness to be ignorable, it must arise from an MCAR 
mechanism. Therefore, the plausibility of ignorable missing data is greater 
with likelihood-based analyses than with GEE or least squares (Verbeke and 
Molenberghs 2000).

The technical explanation for why MCAR and MAR missingness can be 
ignored in likelihood-based analyses (such as those illustrated in Section II) 
is based on factorization of the likelihood function. This factorization expla-
nation and other technical details are covered in the next section and exam-
ples in subsequent sections further illustrate how likelihood-based methods 
account for missing data. 

14.2 Technical Details

Factorization of the likelihood function in this context means that the 
hypothetical “full” data are split into two parts: the actually observed part 
and the missing part, which are often described as the measurement pro-
cess and the missingness process, respectively (Verbeke and Molenberghs 
2000). 

As a building block to factoring the full data likelihood, consider the 
observed data for subject i, denoted as an 1 × ni vector Yi,obs, and the observed 
1 × n  vector of missingness indicators Ri that indicate whether the subject has 
the outcome observed on jth occasion (rij = 1) or missing (rij = 0). The observed 
data likelihood can be written as the joint density of the random variables 
Yi,obs and Ri, f(yi,obs, ri|xi,θ, Ψ), where X is the design matrix for fixed effects 
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(e.g., baseline covariates, treatment, and time), θ is a vector of parameters for the 
outcome process, and Ψ is a vector of parameters for the missingness process. 

The aim in clinical trials is typically to estimate θ, with ψ being of ancillary 
interest. As such, it would be desirable to partition the joint (log-) likelihood 
of (Yi,obs, Ri) so as to isolate the portion of the likelihood that is relevant for 
estimating θ. If such partitioning can be achieved, then the parts of the like-
lihood associated with missingness parameters are not relevant for maxi-
mizing the likelihood with respect to θ—and these missingness parameters 
could therefore be ignored. 

The joint likelihood can be formally written as the product of marginal 
and conditional distributions

 f(yi,obs, ri|xi, θ, Ψ) = f(yi,obs|xi, θ, Ψ) f(ri|yi,obs, xi, θ, Ψ)

or on the log-likelihood scale as the sum

 log[f(yi,obs, ri|xi, θ, Ψ)] = log[f(yi,obs|xi, θ, Ψ)] + log[f(ri|yi,obs, xi, θ, Ψ)].

In this decomposition, θ and Ψ are present in both pieces of the likelihood 
in the right-hand side, and thus Ψ is not ignorable. Fortunately, if missing-
ness results from an MCAR or MAR mechanism and the parameters θ and Ψ 
are functionally separable (the so-called separability condition), a partition-
ing to isolate the parameters of interest is attainable. 

To see how this is possible, consider the full data likelihood that includes 
both the observed and the missing data. Let a random variable Yi,mis denote 
the 1 × (n − ni) component vector of missing data for the ith subject. Although 
Yi,mis represents data that are not observed, it is a valid random variable rep-
resenting the potential outcomes for subjects who discontinued from the 
trial that would have been observed had they remained. 

The observed data likelihood can be written as the integral over the Yi,mis. 
Under the integral sign, the joint density can be written as follows:
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With the introduction of Ymis, the joint likelihood for the full data can be 
factored into pieces that separate the parameters θ and Ψ because of the 
assumption that the complete outcome (Yi,obs, Yi,mis) does not depend on 
the  missingness parameter Ψ, and the missingness process (R) does not 
depend on θ after conditioning on the complete data. By assuming MAR, the 
joint distribution of the observed data can be factored similarly. 
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Under MAR, f(ri|yi,obs, yi,mis, xi, Ψ) = f(ri|yi,obs, xi, Ψ). Therefore, this likelihood 
factor can be taken outside the integral and the desired factorization of the 
observed data likelihood is obtained as follows:

 f(yi,obs,r|xi, θ, Ψ) = f(yi,obs|xi, θ) f(ri|yi,obs, xi, Ψ)

Now parameter θ is associated only with the likelihood term containing 
yi,obs. Therefore, we could estimate θ (and any functions of treatment effect of 
our interest) by using only contributions to the observed data likelihood of 
yi,obs, i = 1, …, N, because the parts associated with parameters of missingness 
(Ψ) would not be relevant for maximizing the likelihood with respect to θ.

This elegant proof (Little and Rubin 1987) is general and applies to any 
type of outcome as long as its likelihood can be written. The proof may be 
appealing to mathematically inclined readers. However, it is not intuitively 
obvious exactly how the missing data in the context of a longitudinal clinical 
trial (dropouts) are accounted for in this analytic framework. A more opera-
tional and instructive explanation of how direct likelihood methods, and in 
particular, methods based on an unstructured modeling of time and covari-
ance, yield unbiased estimates under MAR can be given by a factorization of 
the likelihood for the observed part of the full repeated measures outcome 
Yi = (Yi1, Yi2, …, Yin).

Consider the small example data set with three post-baseline outcomes, 
represented for the ith subject by the trivariate normal variate Yi = (Yi1, Yi2, Yi3) 
and further assume that all the missingness is due to dropouts (i.e., the miss-
ing data have a monotone pattern). Focus first, for simplicity, on the analysis 
of a single treatment arm because adding covariates does not change matters 
in principle. Thus, all time-fixed covariates are denoted collectively as X.

The trivariate normal distribution associated with random variate Yi 
can be factored as a product of the conditional distributions that represent 
a sequence of regressions, where each component of the distribution is 
regressed on the previous outcomes and baseline scores. Subject indices (i) 
are suppressed for simplicity.

 f(y|x, θ) = f(y1|x, θ1) f(y2|x, y1, θ2) f(y3|x, y1, y2, θ3)

Here, parameter θ combines the vector of means and covariance matrix of mul-
tivariate normal distribution of Y conditional on X, and parameters θ1, θ2, and 
θ3 contain regression coefficients and error variances associated with the three 
univariate conditional normal distributions (regressions): [Y1|X], [Y2|X, Y1], and 
[Y3|X, Y1, Y2]. With multivariate normal distributions, there is a one-to-one rela-
tion between parameters in θ and in (θ1, θ2, θ3), therefore, θ can be obtained by 
simple matrix manipulations with θ1, θ2, and θ3, and vice versa.

It is instructive to think of obtaining maximum likelihood (ML) estimates 
of θ via sequentially fitting the above regression models, even though that 
is not how the likelihood maximization procedure is actually implemented 
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in software packages. If the parameters θ1, θ2, and θ3 estimated by the three 
regression models are unbiased under MAR, then θ would also be unbiased. 
The key question here is the following: why are the regression models based 
on observed data unbiased and not adversely affected by the presence of 
missing data?

Recall that the MAR assumption for monotone missingness patterns can 
be stated in two equivalent forms: (1) the missingness mechanism does not 
depend on missing data given observed data and (2) the distribution of unob-
served future outcomes is the same as the distribution of observed future 
outcomes, conditional on earlier outcomes. The second condition means 
that the future outcomes for subjects who discontinued should be similar 
to the future outcomes of subjects who continued if they had the same values 
of past outcomes, covariates, etc. As a result of point 2 above, complete data are 
not needed to estimate any of the three regression models. For example, the 
model based on fitting f (y3,obs|x, y1,obs, y2,obs, θ3) to observed data should esti-
mate the same parameter vector θ3 as if somehow the model was fit to the 
actual missing data: f (y3,mis|x, y1,obs, y2,obs, θ3). Therefore, failing to observe y3,mis 
does not bias estimation results for θ3.

14.3 Example

The small example data set that was introduced in Chapter 4 is used to illus-
trate how direct likelihood analyses account for missing data. Results are 
compared to those based on the corresponding complete data set. Selected 
individual subjects are used for further illustration. Data were analyzed as 
specified in Code Fragment 8.1, which featured an unstructured modeling 
of means and covariance. Recall that in this formulation of the mixed-effects 
model fitting versus not fitting a random intercept has no effect on fixed-effect 
estimates. The model with the random intercept and unstructured modeling is 
actually overspecified in that the residual covariance matrix fully captures all 
the information in the random effects. However, fitting the random intercept 
is useful here in order to obtain predictions for individual subjects. Therefore, 
the random intercept was included mindfully that fixed effects would be 
identical if the random intercept was not included. Results from the data with 
dropout and the corresponding complete data are summarized in Table 14.1.

Results at Time 1 were similar in complete and incomplete data. Differences 
in results between complete and incomplete data were greater at Time 3 than 
at Time 2. This pattern was not surprising, given that no data were missing 
at Time 1 and more data were missing at Time 3 than at Time 2.

As the amount of missing data increased, standard errors increased. Visit-
wise lsmeans for change from baseline were smaller for both treatment 
groups in the incomplete data than in the complete data. This disparity was 
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greater in Treatment 2, thereby yielding a smaller treatment contrast from 
incomplete data than from complete data.

It is important to interpret the results above as just one realization from a 
stochastic process. If the comparisons were replicated many times under the 
same conditions—with missing data arising from an MAR mechanism—the 
average of the lsmeans and treatment contrasts across the repeated samples 
would be the same for complete and incomplete data. Standard errors would 
be consistently greater in incomplete data, however. 

To further clarify how missing data are handled in likelihood-based anal-
yses, consider the observed and predicted values for selected subjects sum-
marized in Table 14.2. First, consider the incomplete data for drug-treated 
(Treatment 2) Subject 1 who was dropped from the study after the first post-
baseline visit. Although Times 2 and 3 were not observed, the parameters for 
the estimated treatment means factor-in the general dependency of Y2 and 
Y3 on Y1, which can be used to generate predicted outcomes. This is because 
under MAR the future values of Y2 and Y3 for Subject 1 and other subjects 
who discontinued after Time 1 follow the relationships associated with the 
conditional distributions of [Y2|Y1] and [Y3|Y1,Y2]. 

For Subject 1, it is predicted that the unobserved outcomes at Times 2 
and 3 would have shown continued improvement, and the improvement for 
Subject 1 would have been greater than the group average. Factors influenc-
ing this prediction include the following: (1) the group to which Subject 1 
belonged showed continued improvement over time and (2) the positive cor-
relation between the repeated measurements suggested that subjects (such 
as Subject 1) with outcomes better (worse) than their group mean were likely 
to remain better (worse) than the group mean in the future. 

Recall that the example data were created by first having complete data 
and then deleting observations according to an MAR mechanism. Therefore, 
the predicted outcomes from the incomplete data can be compared to 

TABLE 14.1

Results from Likelihood-Based Analyses of Complete and Incomplete Data, with a 
Model Including Baseline as a Covariate

Treatment Time

Complete Data Incomplete Data

LSMEANS SE LSMEANS SE

1 1 –4.13 0.91 –4.10 0.91
1 2 –6.70 0.93 –6.42 0.97
1 3 –9.86 1.05 –9.73 1.17
2 1 –5.32 0.91 –5.29 0.91
2 2 –8.70 0.93 –8.52 0.96
2 3 –13.26 1.05 –12.62 1.14
Endpoint Treatment 
Difference

3.39 1.49 (p = 0.0274) 2.90 1.64 (p = 0.084)
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the actually observed complete data and to predicted values obtained from 
the complete data. Predicted values for Subject 1 in the complete data devi-
ate more from the group mean than in the incomplete data. For example, at 
Time 3, the predicted value for Subject 1 is approximately 6 points above the 
mean in complete data and only 3 points above the mean with incomplete 
data. With incomplete data, there is less evidence for the superior improve-
ment of Subject 1; therefore, the above average improvement seen at Time 1 
yields a predicted value at Time 3 that is regressed (shrunk) more strongly 
back to the group mean. The standard errors of the predicted values increase 
substantially when the corresponding observation was missing. Refer to 
Section 5.4 for a detailed examination of how variance components in the 
mixed-effects model influence shrinkage of estimators. 

Similar relationships exist for Subject 30, which came from the placebo 
(Treatment 1) group. However, this subject had smaller improvements than 
the group mean. In the incomplete data, the predicted values for Subject 30 
were less than the group average, reflecting the anticipation of continued 
below average performance. As with Subject 1, incomplete data resulted in 
greater shrinkage of predicted values back to the group mean than in com-
plete data. This increased shrinkage with incomplete data is because the evi-
dence for the deviation in performance was weaker with fewer observations. 

TABLE 14.2

Observed and Predicted Values for Selected Subjects 
from Analyses of Complete and Incomplete Data

Time
Observed
Change

Group
Mean

Pred
Change

SE
Pred Residual

Subject 1 Complete Data
1 –11 –5.32 –12.36 2.16 1.36
2 –16 –8.70 –16.12 2.18 0.12
3 –24 –13.26 –19.20 2.27 –4.79

Subject 1 Incomplete Data
1 –11 –5.29 –10.03 2.70 –0.96
2 . –8.52 –13.49 3.34 .
3 . –12.62 –15.39 4.58 .

Subject 30 Complete Data
1 –2 –4.13 0.20 2.17 –2.20
2 –2 –6.70 –2.32 2.17 0.32
3 0 –9.86 –5.67 2.23 5.67

Subject 30 Incomplete Data
1 –2 –4.10 –1.34 2.51 –0.65
2 –2 –6.42 –3.62 2.52 1.62
3 . –9.73 –6.34 3.85 .
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However, Subject 30 had two observations and the shrinkage in the incom-
plete data was less than if only one value had been observed. Correspondingly, 
the standard errors of the predicted values are smaller for Subject 30 than for 
Subject 1.

14.4 Code Fragments

Given the ignorability properties of direct likelihood, no special adjustments 
to accommodate missing data are required. All the likelihood-based analy-
ses described in Section II of this book can be implemented exactly to incom-
plete data.

14.5 Summary

If missing data arise from an MCAR or MAR mechanism, a likelihood-based 
analysis yields unbiased estimates and valid inferences from the available 
data such that the missing data process can be ignored. Factorization of 
the full data likelihood into parts that isolate the missingness parameters 
from the parameters underlying the outcome process provides the  technical 
explanation for why MCAR and MAR missingness can be ignored in 
 likelihood-based analyses. 

A more intuitive explanation for ignorability arises from the definition 
of MAR. Recall the following two ways to consider MAR: (1) the missing-
ness mechanism does not depend on missing data given observed data 
and (2)  the distribution of unobserved future outcomes is the same as the 
 distribution of observed future outcomes, conditional on earlier outcomes. 
The second condition means that the future outcomes for subjects who dis-
continued should be similar to the future outcomes of subjects who contin-
ued if they had the same values of past (observed) outcomes, covariates, etc. As a 
result of point 2 above, models can be formulated from only the observed 
data that yield unbiased estimates of parameters describing the full data.
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15
Multiple Imputation

15.1 Introduction

Multiple imputation (MI) is a popular and accessible method of model-based 
imputation. Standard references for MI include Rubin (1987) and Little and 
Rubin (2002). Multiple imputation is flexible and therefore has a number of 
specific implementations. However, the three basic steps to MI are: 

 1. Impute the missing data (typically) using Bayesian predictive distri-
butions of missing data, conditional on observed data, resulting in 
multiple (m) completed data sets.

 2. Analyze the m completed data sets using an analysis that would 
have been appropriate for complete data. This results in a set of m 
estimates (e.g., treatment contrasts).

 3. Combine (pool) the m estimates into a single inferential statement by 
using combination rules (or “Rubin’s rules”) that account for uncer-
tainty due to imputation of the missing values, therefore providing 
valid inference. 

These steps can be applied to continuous outcomes that follow a normal dis-
tribution, categorical outcomes, or time to event (e.g., exponentially distrib-
uted) outcomes where missingness is created by censoring.

If MI is implemented using the same imputation and analysis model, and 
the model is the same as the analysis model used in a maximum likelihood-
based (ML) analysis, MI and ML will yield asymptotically similar point esti-
mates. That is, as the size of the data set and the number of imputations in 
MI increase, results from MI and ML converge to a common estimand for 
the 2 point estimates. Although ML is somewhat more efficient (smaller stan-
dard errors) Wang and Robins (1998), MI is more flexible, the distinct steps 
for imputation and analysis in MI yields flexibility that, as explained in sub-
sequent sections, can be exploited in a number of situations. A down side to 
MI is that if interest exists in a number of parameters, the three-step process 
must be applied for each parameter. Alternatively, multiple parameters can 
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be handled simultaneously using a multiparameter version of the combina-
tion rules in Step 3, with the additional burden of estimating the variance 
covariance matrix associated with estimated parameters.

15.2 Technical Details

Point estimates in MI are computed as a simple average of the estimates 
from the m completed data sets. The precision of these estimates is evalu-
ated using simple formulas that incorporate both between-imputation and 
within-imputation variability in the calculation of standard errors. In the fol-
lowing, we provide technical details assuming, for simplicity, the test statis-
tics (and associated estimates) are univariate; however, the formulas readily 
generalize for multivariate statistics.

Let θ =ˆ , 1, ...,i mi  be univariate estimates (e.g., treatment contrasts at the last 
scheduled visit) obtained by applying an appropriate analysis model to the 
m completed data set and =, 1, ...,U i mi  are their estimated (squared) stan-
dard errors. The MI point estimate is 
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Inference on θ is based on the test statistic T
V
MI= θ̂

. As with ML, the θMI
ˆ  esti-

mator is unbiased if missing data arise from an MCAR or MAR mechanism.
The null distribution of T is not normal. Therefore, standard Wald-based 

inference assuming T has the standard normal null distribution is not valid. 
This is because for finite m < ∞ the total variance V is an inconsistent esti-
mate of the true variance of the point estimator, var MIθ(ˆ ). That is, when the 
sample size N increases to infinity, NV does not converge to a constant but 
remains a random variable following a nondegenerate (chi-squared) distri-
bution. This is in contrast to, for example, the variance of a sample mean: 

( )  = σ  → σ =�N x
N
N

constpvar ˆ 2 2 .
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To account for this extra variability, Rubin (1987) proposed using a stu-
dent’s t distribution instead of a normal distribution, with the number of 
degrees of freedom computed as 
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The price paid for the generality of the MI estimator is a degree of conser-
vatism (sometimes negligible). This overestimation of variability has three 
sources (Wang and Robins 1998 and Robins and Wang 2000):

• The asymptotic variance of the MI point estimator (for finite m) 
exceeds that of the ML estimator

• The standard error of the MI point estimator obtained by Rubin’s 
rules may exceed its true value, the square root of the asymptotic 
variance (i.e., overestimation of the standard error) 

• Inconsistency of Rubin’s variance estimator requiring use of the 
wider confidence intervals based on the t distribution rather than 
the normal distribution.

The MI procedure outlined above is essentially an extension of the single 
imputation model using a conditional normal distribution that was intro-
duced in Section 13.5. There are two important differences, however. First, 
each missing value is imputed multiple times, which allows for explicit 
accounting for uncertainty due to the imputation/missing data. This is 
accomplished by incorporating the between-imputation variability. 

The second difference is more subtle. In MI, imputations are simulated 
from the Bayesian predictive distribution of missing data given observed 
data f(ymis|yobs) rather than from the density ( | ˆ)θ′f y ymis obs  with parameters 
θ estimated at specific values (e.g., by maximum likelihood), as shown in 
Section 13.5. The predictive distribution is obtained by integrating (averag-
ing) out parameters from the likelihood using the posterior distribution of 
parameters.

 | | |f y y f y y f y dmis obs mis obs obs∫) ) )( ( (= θ θ θ′  

Therefore, imputed values are sampled from distributions that incorporate 
uncertainty in estimating model parameters and uncertainty due to sam-
pling data from the estimated model.

As a simple example, when estimating the mean and variance of a uni-
variate normal distribution N(θ, σ2), MI accounts for uncertainty in the esti-
mated θ and σ2 as well as uncertainty of sampling missing values from 

∼ (ˆ , ˆ )2Y Nmis θ σ .
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It is instructive to think of imputing (sampling) from a predictive distribu-
tion as a two-stage procedure that is repeated m times. Repeat the following 
two steps m times for i = 1,…,m:

 1. Draw a single random sample from the posterior distribution of 
parameters given observed data � ∼ |f yi obs )(θ θ .

 2. Draw random samples from the observed-data likelihood model 
θ( | )Y f ymis i∼ �  to produce a single completed data set.

The single imputation scheme considered in Section 13.5 essentially imple-
ments only the second step for m = 1 with � 1θ  set to the ML estimate θ = θ̂1

�
ML.

It is useful to consider the consequences of creating m completed data sets 
using only the second step (i.e., without re-sampling from the posterior of θ). 
In this approach, point estimates would still be valid, essentially reproduc-
ing the ML estimates. However, the total variance V computed using Rubin’s 
rules would be too small because the between-imputation variability would not 
include the uncertainty due to parameter estimation. As a result, the confidence 
intervals based on V would be too narrow, failing to maintain the nominal Type I 
error rates. Such imputation models have been termed improper (Rubin 1987).

With complex models, analytic formula for the posterior distribution 
f(θ|yobs) often do not exist and Markov Chain Monte Carlo (MCMC) methods 
can be used (Tanner and Wong 1987; Schafer 1997). 

The MCMC algorithms are widely used in Bayesian inference to sample 
from joint posterior distributions of parameters when analytical expressions 
are not available. Sampling from the predictive distribution of  missing data 
can be incorporated within this general approach through data augmenta-
tion algorithms. In the Bayesian framework there is no fundamental differ-
ence between missing data and parameters; both are  unobserved quantities 
and are dealt with similarly. Although application of MCMC appears differ-
ent from the two-stage sampling outlined above, they implement sampling 
from the same target distribution: f(ymis|yobs).

For example, the Gibbs method alternates between sampling from full 
conditionals � ∼ �| ,1 ( )θ( ) ( )+y f y ymis

k
mis

k
obs  and |1 1f y yk

mis
k

obs( )θ θ( ) ( )+
′

+� ∼ �  through a 
large number of iterations k = 0,…, K, starting with some initial values for 
parameters 0θ )(� . As a result, after some initial (burn-in) draws, the samples of 
� 1( )+ymis

k  and � 1θ( )+k  will be drawn approximately from the unconditional target 
distributions of f(ymis|yobs) and f (θ|yobs), respectively. 

In the context of repeated measures analysis with a multivariate normal 
model, when the pattern of missingness is arbitrary, generic MCMC sam-
pling must be used for imputation. When the pattern is monotone, sampling 
can be based on factorization of the joint normal distribution into a sequence 
of conditionals and using analytical formulas for the posterior distribution 
of parameters associated with each factor.
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For the small example data set with dropout, the factorization of the likeli-
hood is 

 f(y|x, θ) = f(y1|x, θ1) f(y2|x, y1, θ2) f(y3|x, y1, y2, θ3)

Then, imputation can be organized sequentially

• Draw � ∼ ( | , )1 1 1f x yθ θ  and impute missing values for ∼ �, ( | , )1 1 1Y Y f y xmis θ  
(in the example data set no y1 are missing and this step is not needed)

• Draw � ∼ | , ,2 2 1 2f x y y )(θ θ  and impute missing Y2 based on observed 
and imputed Y1 with ∼ � �( | , , )2 1 2θY f y x ymis , where �1y  indicates that the 
value can be observed or imputed

• Draw � ∼ | , , ,3 3 1 2 3f x y y y )(θ θ  and impute missing Y3 based on observed 
and imputed Y1 and ∼ � � �, | , , ,2 3 1 2 3Y Y f y x y ymis )( θ

Therefore, imputation of missing values is done via estimated Bayesian 
regression models where parameters are drawn from posterior distri-
butions. In this case of normal linear regression, missing values for y2 
(Time 2) are imputed by sampling values from the regression model 

= β + β + β + σ� � � � �0 1 2 1Y X Y emis , where X is the baseline score, �
1Y  is observed or 

imputed value of the change from baseline at Time 1 and β β β σ� � � �, , ,0 1 2
2 are 

drawn from their respective posterior distributions. Random error e is sam-
pled from the standard normal distribution, e~N(0,1). Here we omit details 
on specification of prior distributions for the parameters of the imputation 
model and corresponding posterior distributions, which for this case of nor-
mally distributed data are fairly straightforward and can be found, for exam-
ple, in Schafer (1997) or SAS technical documentation for PROC MI.

As an illustration, Figure 15.1 depicts the observed data and the means 
from 100 imputations using the above sequential Bayesian regression for 
Subjects 1, 30, and 49 from the small example data set with dropout. The SAS 
and R code for this analysis is listed in Section 15.8 (Code Fragment 15.1). 
Results for treatment groups are discussed later. The focus here is on the 
individual subjects. Thin solid lines depict the observed data and dotted 
lines depict means of the imputed values for the focus subjects. Thick solid 
lines depict the treatment group means. The error bars indicate standard 
deviation of imputed values.

The trajectory for means of the imputed values resembles the conditional 
means based on a direct likelihood analysis as depicted in Figure 13.4 and 
Table 14.2. Subjects with observed changes that were less than the average 
of their group have mean imputed values that are less than the correspond-
ing group mean; subjects with observed changes that were greater than the 
group average have mean imputed values that are greater than the corre-
sponding group mean. Also, similar to the direct-likelihood analysis, the 
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standard deviation bars indicate greater variability in imputed values at 
Time 3 for Subjects 1 and 49, who had only one observed value (at Time 1) 
compared with Subject 30 who had two observed values.

The concordance between direct-likelihood and MI results is not coinci-
dental; these similarities are expected in all circumstances when the meth-
ods are implemented using similar models. Multiple imputation can also be 
compared with direct Bayesian inference. Rubin (1987) showed that MI is 
compatible with Bayesian analysis in the sense that the MI point estimate 
and variance are approximating the posterior expectation and posterior 
variance of a Bayesian analysis.

In that regard, MI is somewhat circular. First, the Bayesian posterior distribu-
tion of parameters is sampled. Next, the distribution of missing values is simu-
lated, and in the end the posterior sample of parameters is discarded. Hence, 
the posterior distribution of parameters serves merely as an intermediate step 
in imputation. Alternatively, sampling from posterior distribution could con-
tinue and be used for purely Bayesian inference about parameters based on 
the output from posterior distribution of θ’s (and any of their functions). 

As noted earlier in this section, when implemented with similar models, MI 
and ML yield asymptotically similar point estimates, but MI has greater vari-
ance and is therefore less efficient, meaning that ML would be somewhat more 
powerful. However, MI has other advantages, such as when some covariate 
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FIGURE 15.1
Illustration of multiply imputed values for Subjects #1, #30, and #49 from the small example 
data set with dropout. The error bars represent the between imputation variability (standard 
deviation based on the 100 imputed values at each time point).
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values are missing. In likelihood-based analyses, if a covariate is missing for a 
subject, all post-baseline data for that subject are discarded. In MI the missing 
covariates can be imputed, thereby preserving inclusion of the post-baseline 
data. An example of imputing missing covariates is provided in Section 15.5.

Other advantages of MI stem from having separate steps for imputation 
and analysis. This flexibility does not exist in ML because ML has only the 
analysis step, thereby implying that only the analysis variables can be used 
to account for the missing data.

In MI, the imputation model can include additional covariates not  present 
in the analysis model. These covariates may be predictive of outcomes and/or 
the probability of dropout. Meng (1994) and Collins et al.  (2001) provide 
examples of and rationale for these so-called inclusive modeling strategies. 
An example of inclusive modeling is provided in Section 15.6 and additional 
details of inclusive modeling were discussed in Section 12.3.4.

The consequences of an analysis model that is richer (has more variables) 
than the imputation model is very different. Consider an imputation model 
that does not include treatment. The imputation model in essence assumes 
no direct treatment effect and is capable of capturing indirect treatment effect 
that may be mediated via intermediate outcomes (if included in the model). 
As a result, imputed outcomes across treatment arms are likely to be more 
similar than should be the case. Analyses based on such imputed data 
sets therefore would be biased whenever a direct treatment effect existed 
 (additionally to the effect mediated via intermediate outcomes).

Although the model in the example above is misspecified—in the context 
of MAR—it can also be thought of as a specific form of MNAR. In the above 
example, the imputed values systematically deviate from unbiased MAR esti-
mates in a manner that decreases the magnitude of the estimated treatment 
contrast. This points to what is becoming an important usage of MI—as a con-
venient tool for conducting sensitivity analyses. The imputation models can 
be set up to generate specific departures from MAR, thereby fostering a sensi-
tivity analysis for an MAR-based primary analysis. These implementations of 
MI are considered in Chapter 18 and further illustrated in Chapter 21.

15.3 Example—Implementing MI

15.3.1 Introduction

This section provides details on implementing several multiple imputation 
strategies using readily available statistical software applied to data from the 
small example data set with dropout. Focus is on relevant SAS procedures 
because they are commonly used in practice; however, some examples using 
R are also provided.
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In SAS, multiple imputation can be implemented via the following steps:

 1. Use PROC MI to generate m completed data sets. 
 2. Analyze each data set, resulting in m point estimates and standard 

errors. 
 3. Pass the point estimates and standard errors from Step 2 to PROC 

MIANALYZE that implements Rubin’s rules for combining results. 

The output from PROC MIANALYZE includes the upper and lower 
limits of the confidence interval and associated p-value for the two-sided 
null hypothesis that the parameter is at the specified value (e.g., θ = 0). The 
parameter of interest for MI inference can be multivariate, although scalar 
parameters of treatment effects at specific time points will be considered in 
the examples here.

The procedure outlined above is easy to implement and is a common 
approach in conducting multiple imputation analysis in SAS. However, varia-
tions on the approach are possible and sometimes needed. For example, the 
first step can be divided into two steps: (1) sampling from posterior distribu-
tions of parameters estimated by an appropriate likelihood-based model using 
a SAS procedure (different from PROC MI); (2) given each posterior draw, 
impute missing values from the posed imputation model with custom pro-
gramming code. An example could be imputing missing counts (such as in the 
analysis of recurrent events) from a Bayesian Poisson regression, which can 
be fitted separately using SAS PROC GENMOD with the BAYES statement. 
In some situations (in particular, when modeling growth curves in repeated 
measures data) multiple draws from posterior predictive distributions can be 
conveniently obtained via SAS PROC MCMC (available from SAS Version 9.3). 
Performing MI using the above procedures is not covered as we focus here on 
imputation from general multivariate distributions via PROC MI.

In some cases (particularly, for nonparametric and semiparamet-
ric models) sampling from posterior distributions can be replaced with 
 nonparametric bootstrap. For example, data can be sampled with replace-
ment, resulting in m bootstrap samples from the original data. Posterior 
draws θ θ θ� � … �, , ,1 2 m are mimicked with parameter estimates from bootstrap 
samples θ θ∗ ∗…ˆ , , ˆ

1 m. The imputed  values are then generated from conditional 

distributions, ( )θ =∗∼ …|ˆ , 1, ,Y f y i mmis i .
As an example, consider imputing time to event for a subject censored at 

time tcens. Imputations can be based on Kaplan-Meier estimates of a survival 
distribution computed for m bootstrap samples: ( )> =∗� ∼ …ˆ | , 1, ,T S t t t i mi cens .

Bootstrap is also often used in conjunction with hot-deck procedures. 
As stated in Chapter 13, single hot-deck imputation is generally not valid 
because it fails to fully account for uncertainty due to missing data. However, 
using approximate Bayesian bootstrap (such as in “Monotone Propensity 
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Score Method” implemented in SAS PROC MI) allows constructing more 
valid hot-deck procedures. Then missing values are replaced by resampling 
from “donors” within propensity score groups that have similar probability 
of missingness. In this case, the bootstrap is used to mimic sampling from 
predictive posterior distribution of missing data.

Using bootstrap to mimic posterior sampling of parameters—or the predic-
tive distribution of missing data—was termed “approximate Bayesian boot-
strap” in Little and Rubin (1987, section 14.5). This should not be confused 
with standard uses of bootstrap as a method for obtaining standard errors 
and confidence intervals (e.g., via percentile or ABC methods). For example, 
95% confidence interval for the treatment contrast θ can be constructed in 
the familiar manner of using the 2.5% and 97.5% percentiles of the bootstrap 
distribution of the MI point estimator θMI

ˆ  as the confidence interval bounds.
Bootstrap confidence intervals are more computationally intensive than the 

usual confidence intervals based on Rubin’s rules, but can be useful when the 
latter have questionable validity. When using the bootstrap for confidence inter-
vals, multiple imputation should be carried out on each bootstrap sample and 
the MI point estimate computed from the m completed data sets. Efron (1994) 
presented different methods of using bootstrap with missing data and in con-
junction with multiple imputation. However, the following details focus only 
on the traditional three-step process for MI that does not include bootstrapping. 

Example SAS code to implement MI for the small example data set with 
dropout is provided in Code Fragment 15.1 (Section 15.8). The most com-
monly used R package for MI is mice. Example R code to implement MI is 
provided in Code Fragment 15.2.

15.3.2 Imputation

To use PROC MI, the data should be prepared in the so-called “multivariate” 
(or “wide” or “horizontal”) format with data from each time point in a sepa-
rate column. Longitudinal data are typically stored as a “stacked” (or “long”) 
data set, which is the format anticipated by SAS PROC MIXED. Converting 
data from the stacked format to the wide format can be accomplished by 
using SAS PROC TRANSPOSE. The transposed data set is passed to PROC 
MI and missing data are imputed using a multivariate normal model with 
treatment fitted as a covariate or imputations done separately by treatment. 

The example data have a monotone missingness pattern. Therefore, a 
Bayesian regression for multivariate normally distributed data can be used, 
thus avoiding the MCMC methods that are needed for imputing data with 
arbitrary missingness patterns. Checking whether the pattern is monotone can 
be conveniently done by running PROC MI with parameter NIMPUTE = 0. 
Table 15.1 shows the missing data patterns by treatment group that are pro-
duced as default output from PROC MI. The output makes it easy to see that 
the response patterns in the example data are indeed monotone. If a subject has 
a missing value at a given visit, all subsequent observations are also missing.
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The order of variables listed in the VAR statement of PROC MI should 
correspond to the order of imputations. For the example data, the order of 
variables corresponds to the assessment times. Alternatively, the sequential 
orientation can be made explicit using multiple statements. The code for this 
explicit specification is also provided in Code Fragment 15.1. The explicit 
specification is not needed for this example, but provides flexibility that can 
be utilized in other situations that will be illustrated in subsequent examples. 

In this example, data are imputed by treatment arm. This is equivalent 
to having a single imputation model that includes treatment, treatment-by-
visit and all treatment-by-covariate interactions. However, having separate 
imputation models by treatment arm is simple and yields the same result as 
the more parameter-rich single, saturated imputation model (with the minor 
 difference that separate covariance structures would be fitted when using 
by-treatment processing, whereas a single pooled error covariance matrix 
will be used in case of a single imputation model). 

The number of imputations (specified by the parameter NIMPUTE) cho-
sen for this example is 1000. In the early MI literature it was recommended 
that as few as m = 5 imputations was sufficient to achieve good precision 
of MI estimates. This recommendation was based on the argument of rela-
tive efficiency of MI estimates compared to that based on maximum likeli-
hood estimates. However, this recommendation was later challenged. The 
decrease in power due to small m may substantially exceed that expected 
from the theoretical argument based on relative efficiency (Graham et al. 
2007). With modern computing power, generating hundreds and even thou-
sands of imputations can be done in reasonable time. The case for using a 
small number of imputations is obsolete. For a summary of recent literature 
on choosing the number of imputations see van Buuren (2012, pp. 49–50).

As a practical tool for selecting a reasonable number of imputations, the MI 
point estimates can be plotted against the number of imputations, as done in 
Figure 15.2 for the small example data set with dropout. This plot allows visual 

TABLE 15.1

Missing Data Patterns for the Small Example Data Set with Dropout

Treatment Group

Variablesa

Freq PercentBasval Yobs1 Yobs2 Yobs3

1 X X X X 18 72.0
1 2 X X X . 2 8.0
1 3 X X . . 5 20.0
2 1 X X X X 19 76.0
2 2 X X X . 3 12.0
2 3 X X . . 3 12.0

a “X” indicates presence of the outcome score at baseline (Basval) and three post-baseline 
visits (Yobs1, Yobs2, Yobs3). “.” indicates the value is missing. “Groups” identifies the dis-
tinct patterns present in the data set.
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assessment of the stability of MI estimator θm
ˆ  for smaller m and its “convergence” 

to θ∞
ˆ . In Figure 15.2 after m0 = 200, the point estimator is stable, which ensures 

the reproducibility of MI analyses for this data set with m ≥ m0. The sufficient 
number of imputations will of course vary from one data set to another. In all 
examples for this Chapter, m = 1000, although this may be larger than needed.

In PROC MI, the output data set has the same “multivariate” structure as the 
input data set. However, the now completed multiple data sets are stacked and 
the variable named _Imputation_ (assuming values 1,…, <nimpute>) is auto-
matically generated to indicate to which data set each observation belongs. 
Figure 15.3 shows a fragment of the imputed (completed) data set. Imputed 
values can be clearly discerned in this example as they have a larger number 
of decimal points. Sometimes auxiliary variables (with values 0 and 1) that 
indicate whether values were actually observed or imputed may be needed. 
This should be done by writing custom SAS code prior to calling PROC MI.

15.3.3 Analysis 

After completing the imputation step, an appropriate analysis model can 
be applied to each completed set. For longitudinal data, as in the example 
data set, it is natural to consider applying the same direct likelihood analy-
sis of repeated measures via PROC MIXED to each completed data set as 
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MI estimator θ̂m for the treatment contrast at visit 3 computed over the first m completed data 
sets versus the number of imputations (m).
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for the analysis of incomplete data. While this analysis approach is useful 
for assessing the longitudinal response profiles, it is also now possible to 
implement a simple visit-wise ANOVA or ANCOVA if interest is only on the 
cross-sectional contrasts. This is possible because imputation fully accounts 
for the missing data (if assumptions hold true) and there is no benefit from 
further accounting for the missing data via a repeated measures analysis. 

When applying the analysis model to imputed data it is useful to take 
advantage of SAS “BY-processing” capability using the “by _Imputation_” 

_Imputation_ trt subject basval Yobs1 Yobs2 Yobs3

1 1 1 2 20 −6 −5.371893093 −10.27327664
2 1 1 5 12 −6 −3 −9
3 1 1 6 14 −6 −10 −10
4 1 1 8 21 −2 −9 −9
5 1 1 9 19 −9 −6 −12.78127318
6 1 1 13 20 −9 −12 −13
7 1 1 14 19 −6 −12 −16
8 1 1 16 19 −3 −11 −17
9 1 1 18 23 −7 −10 −15

10 1 1 19 26 −5 −5 −11
11 1 1 24 20 1 −1 −6
12 1 1 25 22 0 −4 −9
13 1 1 27 21 −1 −2 −3
14 1 1 28 21 −2 −2 −2
15 1 1 30 19 −2 −2 −6.425250822
16 1 1 32 24 −10 −14 −20
17 1 1 34 21 −2 −1 −6
18 1 1 36 20 −4 −7.120718604 −14.13814589
19 1 1 38 22 −3 −5 −6
20 1 1 40 18 −5 −6.057750783 −2.045101917
21 1 1 42 15 0 −2 −8
22 1 1 43 19 −3 −6.167970307 −10.26103763
23 1 1 45 20 −9 −11 −9
24 1 1 48 17 −10 −14 −14
25 1 1 49 23 4 4.4830432444 2.5435936604
26 2 1 2 20 −6 −11.29465031 −11.65938348
27 2 1 5 12 −6 −3 −9
28 2 1 6 14 −6 −10 −10
29 2 1 8 21 −2 −9 −9
30 2 1 9 19 −9 −6 −16.37321523
31 2 1 13 20 −9 −12 −13
32 2 1 14 19 −6 −12 −16

FIGURE 15.3
Fragment of complete data set produced by PROC MI.
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statement in the analysis procedure. If a repeated measures analysis of the 
imputed data is desired, an additional data manipulation step is needed to 
transpose the PROC MI output data set back to the “stacked” format required 
with repeated measures data in PROC MIXED. In this example, the simple 
ANCOVA model is implemented to analyze the Time 3 variable (Yobs3 in the 
imputed data set). The point estimates and standard errors from the analyses 
of some of the imputed data sets are shown in Figure 15.4.

15.3.4 Inference

The last step in MI is to combine estimates and standard errors to obtain 
a single inferential statement. Code Fragment 15.3 shows the SAS code for 
PROC MIANALYZE to accomplish this step. The “by time” statement is used 
here because the input data set contains treatment contrasts for Time 2 and 
Time 3. Note that Time 1 did not have missing values; therefore, all estimates 
for the treatment contrast at Time 1 obtained from the multiply imputed 
data set are identical and, of course, it does not make sense to run PROC 
MIANALYZE for Time 1. The results are shown in Table 15.2.

The lsmeans, treatment contrasts, and standard errors from the MI analysis 
of the incomplete data are, as expected, similar to the corresponding results 
from direct likelihood (see Table 14.1). Compared with the complete data, the 

_Imputation_ Label Estimate StdErr DF tValue Probt time

267 67 trt eff ect at vis 3 −1.7813 1.4729 47 −1.21 0.2325 3
268 68 trt eff ect at vis 3 −3.4297 1.4091 47 −2.43 0.0188 3
269 69 trt eff ect at vis 3 −3.1104 1.5551 47 −2.00 0.0513 3
270 70 trt eff ect at vis 3 −2.3183 1.5762 47 −1.47 0.1480 3
271 71 trt eff ect at vis 3 −2.5356 1.4717 47 −1.72 0.0915 3
272 72 trt eff ect at vis 3 −4.4898 1.6927 47 −2.65 0.0109 3
273 73 trt eff ect at vis 3 −2.9977 1.4591 47 −2.05 0.0455 3
274 74 trt eff ect at vis 3 −3.4374 1.5221 47 −2.26 0.0286 3
275 75 trt eff ect at vis 3 −1.8695 1.7225 47 −1.09 0.2833 3
276 76 trt eff ect at vis 3 −3.6741 1.5684 47 −2.34 0.0234 3
277 77 trt eff ect at vis 3 −3.5779 1.4950 47 −2.39 0.0207 3
278 78 trt eff ect at vis 3 −3.8548 1.5870 47 −2.43 0.0190 3
279 79 trt eff ect at vis 3 −3.5465 1.4240 47 −2.49 0.0163 3
280 80 trt eff ect at vis 3 −4.0039 1.7441 47 −2.30 0.0262 3
281 81 trt eff ect at vis 3 −4.0162 1.4955 47 −2.69 0.0100 3
282 82 trt eff ect at vis 3 −4.0411 1.3845 47 −2.92 0.0054 3
283 83 trt eff ect at vis 3 −3.5701 1.4470 47 −2.47 0.0173 3
284 84 trt eff ect at vis 3 −2.3854 1.3850 47 −1.72 0.0916 3

FIGURE 15.4
Fragment of results from the analyses of multiply imputed data sets to be used as input for 
PROC MIANALYZE.
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MI results show a smaller treatment contrast, larger standard errors, and a 
larger P-value for the endpoint treatment contrast. It is important to interpret 
these results as just one realization from a stochastic process. If the compari-
sons were replicated many times under the same conditions—with miss-
ing data arising from an MAR mechanism—the average of the lsmeans and 
treatment contrasts across the repeated trials would be (approximately) the 
same for complete and incomplete data. Standard errors would be consis-
tently greater in incomplete data, however.

15.3.5 Accounting for Nonmonotone Missingness

Thus far, only monotone missingness has been addressed. When the pattern 
of missing data is nonmonotone, PROC MI with the addition of the MCMC 
statement can be used. To illustrate these procedures, intermittent missingness 
was introduced into the example data by deleting some outcomes at Time 2 for 
subjects that had no other missing data. The Time 2 data were deleted for three 
subjects in the treated group (2) and for two subjects in the placebo group (1).

The top panel (a) of Code Fragment 15.4 (Section 15.8) provides an example 
of PROC MI code for imputation from a multivariate normal distribution 
using MCMC. Missing values are imputed from a single chain of the MCMC 
algorithm. Recall that MCMC samples converge to the target posterior dis-
tribution as the number of samples becomes large. Therefore, to ensure 
that the draws occur sufficiently close to the target distribution, a number 
of initial samples are skipped. This skipping is specified in the number of 
burn-in iterations (NBITER = 200). Also because of serial correlation in sam-
pled values within the same chain, a thinning period should be specified 
as the number of iterations between imputations in a chain. In the exam-
ple, (NITER = 100) and PROC MI skips 100 samples after each imputation. 
The values NBITER = 200 and NITER = 100 are defaults that would be used 
if these options are omitted but are explicitly specified here for illustration. 

The various MCMC diagnostics (e.g., autocorrelation plots) should be 
inspected. Imputations should be rerun with increased values of NBITER and 

TABLE 15.2

Treatment Contrasts and Least-Squares Means Estimated by Multiple 
Imputation from the Small Example Data Set with Dropout

Treatment Time

Complete Data
Incomplete Data (MI), 

m = 1000

LSMEANS SE LSMEANS SE

1 2 −6.70 0.93 − 6.36 1.01
1 3 −9.86 1.05 − 9.61 1.19
2 2 −8.70 0.93 − 8.50 0.99
2 3 −13.26 1.05 − 12.56 1.23
Endpoint Treatment 
Difference

3.39 1.49 
(p = 0.0274)

2.95 1.73 
(p = 0.0971)
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NITER if issues exist with MCMC convergence (see PROC MI help for more 
details). The example code explicitly specified that the initial values for the 
MCMC chain are posterior modes of parameters obtained by the EM (expecta-
tion-maximization) algorithm, with the maximum number of iterations set at 
MAXITER = 200. This number should be increased if the EM algorithm fails to 
converge within the specified limit. Nonconvergence is more likely in data sets 
with larger fractions of missing data or if there are sparse patterns of missing 
values. The SAS log file includes a warning if convergence was not achieved. 

The MCMC approach may be rather cumbersome. It (typically) requires 
more computing time compared with regression methods. The additional 
layer of approximation inherent in MCMC requires monitoring for conver-
gence to the desired target distributions. In contrast, the regression methods 
for monotone data sample directly from the target distributions and so there 
is no worry about convergence. 

Often, only a few intermittently missing values cause the patterns to devi-
ate from monotone as a result of a few patients with missed outcomes while 
remaining in the study. In these situations it is efficient to first impute the 
intermittent missing values using PROC MI to complete the pattern to mono-
tone; then, methods for monotone missingness can be applied, such as the 
Bayesian regression from the previous example.

The SAS code for implementing this two-stage imputation strategy is pre-
sented in the bottom panel (b) of Code Fragment 15.4 (Section 15.8). Two runs 
of PROC MI are required. The first run produces partially completed data 
sets, each having a monotone pattern of missing values. The second run takes 
the output data set from the first run as input, processed by _Imputation_, 
and completes each data set with a single imputation from Bayesian regres-
sion for monotone data.

15.4 Situations Where MI Is Particularly Useful 

15.4.1 Introduction

This section outlines situations when MI-based analyses provide certain 
advantages compared to direct likelihood (ML) or present a reasonable ana-
lytic strategy in absence of appropriate direct likelihood methods. Detailed 
examples are provided in subsequent sections.

15.4.2  Scenarios Where Direct Likelihood Methods Are 
Difficult to Implement or Not Available

One general area where MI can be particularly useful is situations where direct 
likelihood methods are hard to implement or not available. Several scenarios 
when this may be the case for analysis of clinical data are outlined below.
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Missing baseline covariates make direct likelihood methods (e.g., via SAS 
PROC MIXED) sub-optimal because all subjects with a missing covariate are 
discarded from the analysis. In contrast, MI can be used to impute baseline 
covariates jointly with outcome variables (see Section 15.5 for examples).

Repeated categorical outcomes are hard to analyze using direct likeli-
hood methods because—in contrast to multivariate normal distributions 
for repeated continuous outcomes—multivariate distributions for binary or 
count data do not have simple and natural formulations. Details on analyses 
of incomplete categorical data are provided in Chapter 19. Imputing missing 
categorical data is relatively easy, especially for data with monotone miss-
ingness when sequential imputation strategies can be applied.

For outcomes of mixed types (continuous and categorical), MI can be 
implemented either by sequential imputation (for monotone patterns of 
missing data) or in the case of arbitrary missingness by repeatedly sam-
pling from full conditional distributions (van Buuren 2007). The method of 
“fully conditional specification” (FCS) is implemented in the R package mice 
(Multivariate Imputation by Chained Equations) and recently in SAS PROC 
MI (via FCS statement available from SAS Version 9.3 and later).

Unlike joint modeling, FCS specifies the multivariate distributions through 
a sequence of conditional densities of each variable given the other variables. 
With FCS it is even possible to specify models for which no joint distribution 
exits — a situation referred to as incompatibility. Although incompatibility 
is not desirable, in practice it is a relatively minor problem, especially if the 
missing data rate is modest (van Buuren 2012, p. 112).

15.4.3 Exploiting Separate Steps for Imputation and Analysis

Other situations where MI is particularly useful are those in which the sepa-
ration of the imputation and analysis stages can improve efficiency (com-
pared to direct likelihood methods).

Recall that the original motivation for MI in Rubin (1978) was for analy-
sis of complex surveys where the imputer had access to more information 
than the analyst. The idea was that once the missing data has been imputed 
using the richer set of data, completed data sets with a limited number of 
variables would be made publicly available for analysts. Several clinical trial 
situations are considered where the imputation model can be based on more 
information than is included in the analysis model.

Sometimes clinical endpoints specified in the primary analysis are derived 
outcomes based on underlying outcomes. In such situations, an efficient MI 
strategy could include four steps: 

 1. Impute missing data for the underlying outcome measures.
 2. Compute derived outcomes from the completed data sets.
 3. Analyze completed data.
 4. Combine (pool) results for inference. 
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An example of a derived variable is the analysis of “clinical response,” defined 
as x% improvement in some continuous scale (or a combination of several 
scales). Imputing the underlying continuous measures may improve efficiency 
compared to analysis (or imputation and analysis) of the binary outcome. 

As noted in Section 15.3.4, MI can utilize auxiliary variables in the imputa-
tion model that help predict the outcome and/or the dropout process. These 
auxiliary variables may not be available or are undesirable for use in analy-
sis model (Meng 1994; Collins et al. 2001). For example, the analysis model 
should not include intermediate outcomes or mediators of treatment effect, 
which would result in diluting the estimated treatment effect in a likelihood-
based analysis. Classic examples of such variables would be time-varying 
post-baseline variables that are influenced by treatment, such as secondary 
efficacy outcomes. 

The following situations are examples of inclusive imputation strategies 
that can be useful.

• Pretreatment covariates (demographic and illness characteristics), 
and perhaps their interactions with treatment, are included in the 
imputation model. The selection of covariates can be based on their 
ability in predicting the outcome or in predicting dropout. This can 
be evaluated in separate modeling steps and a subset of covariates 
can be selected from a broader set of candidate covariates using 
appropriate model selection techniques such as stepwise selection, 
LASSO, or other machine learning methods.

• Post-baseline time-varying covariates. Inclusive imputation models 
can be used to jointly impute two related outcomes, such as two effi-
cacy scales, Y1 and Y2. This may be two clinical rating scales that 
reflect different aspects of the disease and “borrowing” from Y2 
may improve imputation of Y1. An example is given in Section 15.6, 
where joint imputations of the clinician-rated HAMD severity scale 
and a patient-reported outcome scale (Patient Global Impression 
of Improvement) are conducted. The basic idea is that incorporat-
ing both the clinician’s and patient’s perspective on response may 
help explain subsequent HAMD outcomes and/or better inform the 
missingness process.

• When the outcome of interest is collected at sparse visit intervals 
or only at the last scheduled evaluation whereas other outcomes 
are observed more frequently. Examples include efficacy and 
safety scales collected at scheduled time points and spontaneously 
recorded outcomes (occurrences of hospitalizations, adverse events).

An approach that at first may seem counterintuitive but can be useful is to 
use safety assessments to help impute efficacy outcomes. Suppose that drop-
outs are predicted by both previous outcomes and future (unobserved out-
comes) so the missingness is MNAR. Then MI using only earlier outcomes 
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is inadequate and may result in biased estimates. However, suppose that 
conditional on both recent safety assessments (occurrence of specific adverse 
events) and earlier efficacy outcomes the dropouts do not depend on future 
outcomes. This may be the case when AEs are early signs/predictors of 
emerging changes (sudden worsening, say) in the outcome that cannot be 
predicted from the efficacy outcome alone. In this scenario, adding safety 
assessments in the imputation model may help satisfy the MAR assumption. 

15.4.4 Sensitivity Analysis

The flexibility of separate analysis and imputation steps can be used to create 
relevant departures from MAR, thereby facilitating a sensitivity analysis for 
an MAR primary analysis. Alternatively, the same imputation approaches 
can be conceptualized as modeling plausible outcomes after treatment dis-
continuation or switching treatment when assessing an effectiveness esti-
mand. Such MNAR analyses can be implemented via MI by controlling the 
imputation procedures or done by manipulating imputed outcomes prior to 
data analysis. Extensive examples are provided in Chapters 18 and 19.

It is important to appreciate the point raised earlier in this chapter that 
when implemented in similar manners, MI and ML have similar assump-
tions and yield similar results. Therefore, MI implemented similarly to ML 
is not a sensitivity analysis. The point here is that something “different” is 
done during the imputation step that facilitates the sensitivity assessment.

15.5 Example—Using MI to Impute Covariates

15.5.1 Introduction

In the small example data set with missing values, there were no missing 
baseline values. In well-conducted clinical trials, missing data in baseline 
covariates are usually minimal. However, occasionally some subjects may 
have missing baseline values. In addition, analysis models may include 
stratification covariates or other covariates that could be missing. In such 
scenarios the chance that at least one covariate is missing for a given sub-
ject can be appreciable (say 5–10%). In these situations, typical likelihood-
based analyses are not optimal because subjects with missing covariates are 
excluded from the analysis, resulting in loss of efficiency and potentially 
biased estimates. 

15.5.2 Implementation

Multiple imputation provides several strategies for imputing miss-
ing covariates. An obvious route is to use a two-stage strategy similar to 
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that demonstrated in Section 15.3 for data with nonmonotone missing-
ness. First, MCMC-based imputation is used to impute missing covariates. 
Then the missing post-baseline values can be imputed to create the complete 
data sets. The SAS code for imputing covariates and missing post-baseline 
covariates in a scenario with baseline severity and three covariates (X1, X2, 
and X3) is presented in Code Fragment 15.5 (Section 15.8). The approach is 
similar to that in Code Fragment 15.4, thereby illustrating that only minor 
modification is required to impute missing covariates. 

Another potential strategy may be to impute only missing baseline 
covariates using MCMC (PROC MI) and then applying a direct likelihood 
repeated measures analysis to multiple data sets with imputed baseline 
covariates and using Rubin’s combination rules as we would normally do 
when imputing all missing values. Results from this MI approach can be 
compared with the analysis where all subjects with missing covariates were 
excluded in order to isolate the impact of missing baseline covariates on 
the estimated treatment effect and associated standard errors. Imputing 
missing covariates should improve efficiency and lead to smaller standard 
errors when compared to deleting records with missing covariates. Also, 
if baseline covariates are not missing completely at random, estimates of 
the treatment effect may be biased if subjects with missing covariates are 
excluded.

To illustrate the efficiency of multiply imputing covariates alone, artificial 
missingness in baseline severity was created in the small example data set 
with dropout by deleting the baseline scores of five subjects who had unfa-
vorable outcomes in HAMD changes at the last scheduled visit. Lsmeans and 
treatment contrasts from a direct likelihood analysis (SAS PROC MIXED) of 
the 45 subjects with nonmissing baseline scores in the small example data 
set with dropout are compared to results from MI of the missing covariates 
in Table 15.3. The left-side columns are results from the direct likelihood 
analysis that excluded subjects with missing covariates. The right-side col-
umns are results based on the same repeated measures model fitted to data 
sets with baseline scores imputed using all available outcome variables (via 
PROC MI, MCMC statement with IMPUTE=MONOTONE option). As men-
tioned, normally both baseline and post-baseline values would be imputed. 
However, the approach used here is valid under MAR and allows explicit 
assessment of the impact of having to exclude subjects with missing covari-
ates in the likelihood-based analysis.

The results with MI of the missing covariates, as expected, had smaller 
standard errors. Excluding the five patients with missing baseline scores also 
resulted in approximately a one-half point increase in the endpoint treatment 
contrast. Of course, this is just one contrived example from a small example 
data set. It is not possible to know how including versus not including sub-
jects with missing covariates will impact point estimates in actual clinical 
trial scenarios. However, regardless of scenario, including subjects with miss-
ing covariates increases the plausibility of MAR and reduces the standard 
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errors compared with excluding those subjects and allows following the ITT 
principle in terms of including all randomized subjects in the analysis.

This hypothetical example also helps to illustrate why imputation models 
for covariates should include post-baseline outcomes. Including post- baseline 
outcomes for imputing covariates may at first seem counterintuitive in that 
the model is predicting the past from the future. However, the approach can 
be justified theoretically and was also shown to be appropriate in simulation 
studies (Crowe et al. 2009). 

The imputation model does not have to be a causal model. In fact, if the 
missingness mechanism is such that subjects with poorer outcomes are 
more likely to have missing baseline scores, failing to include future out-
comes when imputing baseline covariates may result in biased estimates of 
the fixed effects associated with these covariates. 

Whether this bias would translate into biased estimates of treatment con-
trasts is not a clear-cut issue. Treatment may seem independent of baseline 
covariates due to randomization, in which case bias in estimates of covari-
ates would not bias treatment contrasts. However, an incorrect imputation 
model (provided it includes post-baseline measures) may induce correlation 
between the treatment variable and covariates. Treatment contrasts could 
be biased indirectly through the biased estimates of the fixed effects associ-
ated with covariates. See Section 5.3.1 for examples and illustration of how 
changes that directly affect one parameter also indirectly affect another 
parameter—that is, correlation between estimates of fixed effect parameters.

In general, the imputation model should be compatible with the analysis 
model. That is, if an effect is included in the analysis model it should also be 
used in the imputation model.

TABLE 15.3

Treatment Contrasts and Least-Squares Means with and without Imputation of 
Missing Covariates in the Small Example Data Set with Dropout

Treatment Time

Covariates Missinga Covariates Imputedb

LSMEANS SE LSMEANS SE

1 1 −4.08 0.90 −4.21 0.94
1 2 −6.55 1.05 −6.56 1.00
1 3 −9.79 1.21 −9.78 1.12
2 1 −6.05 0.92 −5.25 0.94
2 2 −9.05 1.05 −8.45 0.98
2 3 −13.36 1.21 −12.79 1.09
Endpoint 

Treatment 
Difference

3.56 1.71 
(p = 0.0443)

3.01 1.56 
(p = 0.0606)

a Direct likelihood analysis with five subjects having missing covariates who are therefore 
excluded from the analysis.

b Direct likelihood analysis after multiple imputation of missing baseline covariates.
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15.6 Examples—Using Inclusive Models in MI 

15.6.1 Introduction

Section 12.3.4 introduced and contrasted inclusive and restrictive modeling 
frameworks. This section provides an example of an inclusive imputation 
strategy for the small example data set with dropouts. In this example, as else-
where in this book, the primary outcome of  interest is change in the HAMD 
scale. The difference here is that the Patient Global Impression of Improvement 
(PGIIMP) scale is used in addition to HAMD scores to “improve” the impu-
tation of the missing HAMD scores.

Recall from the descriptions in Chapter 4 that the HAMD is a clinician-
rated symptom severity score that focuses explicitly on specific symptoms 
and combines responses on the 17 individual items into a total score. The 
PGIIMP scale is a patient-rated measure of global improvement taken at each 
post-baseline visit. The PGIIMP assesses patient’s overall feeling since they 
started taking medication and ranges from 1 (“very much better”) to 7 (“very 
much worse”). The process used to delete data to create the small example 
data set with dropout was such that if a HAMD value was deleted, the cor-
responding PGIIMP value was also deleted.

The clinical and statistical justification for this inclusive strategy stems 
from the PGIIMP reflecting patients’ overall perspective, which may capture 
aspects not fully captured by the clinician-rated HAMD scale. 

15.6.2 Implementation

The first step in jointly imputing HAMD and PGIIMP using SAS PROC MI is 
to transpose data for both outcomes from the “stacked” to the “horizontal” 
format. That is, the output data set has three columns for changes in HAMD 
(CHG1, CHG2, CHG3) and three columns for PGIIMP1, PGIIMP2, PGIIMP3 
that correspond to post-baseline Times 1, 2 and 3. Columns are also included 
for baseline severity on the HAMD and treatment group. There are no base-
line assessments for PGIIMP because it is inherently a measure of change. 

The next step is to check for monotonicity of missingness patterns on both 
outcomes. For this purpose, the following order of the outcome variables 
is assumed: CHG1 PGIIMP1 CHG2 PGIIMP2 CHG3 PGIIMP3. Table 15.4 
 displays the missing data patterns produced by SAS PROC MI that indicate 
the joint patterns are indeed monotone. One patient with a HAMD score at 
Time 3 had a missing Time 3 PGI–Improvement (Group 2, Treatment 2 in 
Table 15.4). The pattern is still monotone because PGIIMP3 goes after CHG3 
in the ordering of variables. Imputation of values for PGIIMP3 is not needed 
because focus is on HAMD and PGIIMP3 does not inform imputation for 
CHG3. Hence, the PGIIMP3 column could be omitted with no impact on 
HAMD results. 
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Two imputation approaches can be considered. All outcomes can be treated 
as continuous and sequential Bayesian regression for multivariate normal 
data used to impute both HAMD changes and PGI–Improvement. In this 
approach, it is possible to impute missing values for PGIIMP that are out-
side the scales range of 1 to 7. Therefore, the validity of applying a normal 
distribution to categorical PGIIMP data may be questioned. Schafer (1997) 
showed that imputation is fairly robust to some deviations from multivariate 
normality. Also, Lipkovich et al. (2014) provide simulation evidence in favor 
of using a multivariate normal distribution for imputing categorical data. 

The second approach avoids assuming multivariate normality for PGI–
Improvement. The process is to sequentially implement: (1) linear regres-
sion to impute changes in HAMD conditional on earlier HAMD changes and 
on PGI–Improvement and (2) ordinal logistic regression to impute missing 
PGIIMP values conditional on earlier (observed or imputed) HAMD changes 
and PGIIMP scores. 

Implementing this second approach in SAS PROC MI requires specify-
ing PGIIMP1 and PGIIMP2 as class variables in both linear and logis-
tic  regression models. Recall that a PGIIMP score of 4 corresponds to “no 
change,” and scores > 4 indicate worsening. In these data, PGIIMP scores > 
4 are uncommon. Therefore, all scores > 4 were combined with scores of 4 
(i.e., recoded as “level 4”) and the rescaled PGI scores for Time 1 and Time 2 
were named PGIIMPGR1 and PGIIMPGR2, respectively.

The SAS code to implement the imputation strategy using multivariate 
 normal is provided in the top panel (a) of Code Fragment 15.6 (Section 15.8) and 
the code to implement the normal-ordinal model is in the bottom panel (b). In 
PROC MI, it is possible to sample from truncated marginal distributions when 
imputing PGIIMP2 scores, thereby ensuring the scores are within the scale 
range 1 to 7. However, this approach was shown to be inferior to nontruncated 
imputation (Lipkovich et al. 2014). Therefore, truncation is not used here. 

Imputation of categorical outcomes by an ordinal logistic model is simi-
lar in spirit to imputation by linear regression (explained in Section 15.2). 
Code Fragment 15.6 implements Bayesian ordinal logistic regression fit-
ted separately for each treatment arm to predict PGIIMP scores at Time 2 
given PGIIMPGR1 (class variable), CHG1 (continuous variable) and baseline 
HAMD score (continuous variable). Then, for a single draw from the poste-
rior distribution of model parameters, the probability for each of the four 
categories, P1, P2, P3, P4 (adding up to 1), is estimated and imputed values 
are generated as a multinomial random variable. 

For example, the probability of category “2” is computed as the differ-
ence Prob(PGIIMP2=”2”)=Prob(PGIIMP2≤”2”)−Prob(PGIIMP2≤”1”) whereas 
Prob(PGIIMP2≤”2”) and Prob(PGIIMP2≤”1”) are directly estimated from the 
assumed logistic model 

 ∑( )≤  = + βProblogit Y l a xi k k ij j  
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where Yi denotes the PGI Improvement score for the ith patient, lk, k = 1,…,3 
correspond to the categories “1”, “2”, “3” of the outcome variable, and xij rep-
resents the observed or imputed score for the jth covariate. The time dimen-
sion and specific covariate structure (including for this case BASVAL and 
CHG1) is suppressed to simplify notation.

Results from the two models are summarized in Table 15.5. The treat-
ment contrasts from the normal and logistic-normal imputation models 
were 2.69 and 2.87, respectively. Recall the treatment contrast from “stan-
dard” MI in Table 15.2 was 2.95. It is important to interpret these results as 
an illustration. The intent is to show the potential usefulness of, and the 
process for, inclusive multiple imputation models. Results from this small 
example data set do not inform expectation of results for actual clinical trial 
scenarios. 

The Code Fragment 15.7 illustrates using the R package MICE for multiply 
imputing continuous outcomes jointly with categorical PGIIMP scores.

15.7 MI for Categorical Outcomes

As explained in Chapter 10, likelihood-based analyses can be difficult to 
implement for categorical outcomes. Therefore, multiple imputation pro-
vides an important framework for MAR-based analyses of categorical data.

See Chapter 19 for a general discussion of accounting for categorical miss-
ing data. This discussion includes multiple imputation examples for analysis 
of a binary outcome derived from an underlying continuous scale and for an 
ordinal categorical variable.

TABLE 15.5

Treatment Contrasts and Least-Squares Means Estimated by Multiple 
Imputation: Changes in HAMD Using Joint Model for HAMD and PGIIMP

Treatment Time

Incomplete Data (MI) 
(Joint Multivariate Normal 

Model)

Incomplete Data (MI) (Joint 
Modeling using Normal 
Model for HAMD and 

Ordinal Logistic for PGIIMP)

LSMEANS SE LSMEANS SE

1 2 −6.37 1.02 −6.35 1.01
1 3 −9.72 1.22 −9.76 1.38
2 2 −8.45 0.99 −8.59 1.00
2 3 −12.41 1.20 −12.63 1.30
Endpoint 
Treatment 
Difference

2.69 1.71 
(p = 0.1248)

2.87 1.90 
(p = 0.1393)
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15.8 Code Fragments

CODE FRAGMENT 15.1 SAS Code for Multiple 
Imputation Analysis. Creating Completed Data Sets 

with PROC MI Using Monotone Imputation

/*  transpose original data resulting in WIDE data with 
outcome columns Yobs1 Yobs2 Yobs3 corresponding to 
post-baseline visits 1,2,3 */ 

PROC SORT DATA=ALL2; BY TRT SUBJECT BASVAL; RUN;
PR OC TRANSPOSE DATA=ALL2 OUT= ALL2_TRANSP2 (DROP=_NAME_) 

PREFIX=YOBS;
BY TRT SUBJECT BASVAL;
VAR CHGDROP;
ID TIME;

RUN;

/* check whether pattern is monotone */
PROC MI DATA = ALL2_TRANSP2 NIMPUTE =0;

BY TRT;
VAR BASVAL YOBS1 YOBS2 YOBS3;

RUN;

/* perform multiple imputation for monotone data */
PR OC MI DATA = ALL2_TRANSP2 OUT = ALL2_MIOUT NIMPUTE=1000 

SEED=123;
BY TRT;
MONOTONE METHOD=REG;
VAR BASVAL YOBS1 YOBS2 YOBS3;

RUN;

/*  multiple imputation of monotone data with explicit model 
statement*/

PR OC MI DATA = ALL2_TRANSP2 OUT = ALL2_MIOUT_2 
NIMPUTE=1000 SEED=123;
BY TRT;
VAR BASVAL YOBS1 YOBS2 YOBS3;
MONOTONE REG (YOBS1 =BASVAL);
MONOTONE REG (YOBS2 =YOBS1 BASVAL);
MONOTONE REG (YOBS3 =YOBS2 YOBS1 BASVAL);

RUN;
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CODE FRAGMENT 15.2 Example R Code for Multiple 
Imputation Analysis of Continuous Outcome with Arbitrary 

Missingness: Change from Baseline on HAMD

library(mice)
# assumes transposed data set in multivariate format
head(hamdchng)

 trt basval CHG1 CHG2 CHG3
1 1 20 −6    NA    NA
2 1 12 −6  −3  −9
3 1 14 −6 −10 −10
4 1 21 −2  −9  −9
5 1 19 −9  −6    NA
6 1 20 −9 −12 −13

# performs MI, using imputation sequence: CHG2, CHG3
imp<-mice(hamdchng, seed=123,visitSequence=c(4,5))

#  creates data with imputed sets stacked (if need to look 
at data) 

# columns are trt, basval CHG1, CHG2,CHG3 
stacked<-complete(imp,"long",)

# fits a linear model for changes in HAMD at vis3 to each 
completed set
fit<-with(imp, lm(CHG3~trt+basval))

# pooles inference using Rubin's rules
est<-pool(fit)
summary(est)

CODE FRAGMENT 15.3 SAS Code for Multiple Imputation 
Analysis.* Combined Inference Using PROC MIANALYZE

/* combined inference for estimated treatment contrasts */
ODS OUTPUT PARAMETERESTIMATES=ES_MI;
PROC MIANALYZE DATA=ES_MI_M ;

BY TIME;
MODELEFFECTS ESTIMATE;
STDERR STDERR;

RUN;
/* combined inference for lsmeans */
ODS OUTPUT PARAMETERESTIMATES=LS_MI;
PROC MIANALYZE DATA=LS_MI_M ;

BY TIME TRT;

* Code Fragment 15.3 assumes that data analysis was ran on imputed data and the estimates and 
associated standard errors of time- specific treatment contrast are saved in SAS data set ES_MI_M.
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MODELEFFECTS ESTIMATE;
STDERR STDERR;

RUN;

CODE FRAGMENT 15.4 SAS Code for Multiple Imputation 
Analysis. Imputing Data from Nonmonotone Pattern Using MCMC

a) /* using MCMC to impute data from non-monotone patterns */

PR OC MI DATA = ALL2_TRANSP3 OUT = ALL2_MIOUT NIMPUTE=1000 
SEED=123;
BY TRT;
MC MC CHAIN=SINGLE NBITER=200 NITER=100 INITIAL=EM (ITPRINT 

MAXITER=200);
VAR BASVAL YOBS1 YOBS2 YOBS3;

RUN;

b)  /* using MCMC to first complete data to monotone and 
then perform a single imputation to each monotone set by 
Bayesian regression to produce complete data sets */

PROC MI DATA = ALL2_TRANSP3 OUT = ALL4_MIOUT NIMPUTE=1000 
SEED=123;
BY TRT;
MCMC IMPUTE = MONOTONE;
VAR BASVAL YOBS1 YOBS2 YOBS3;

RUN;

PROC SORT DATA=ALL4_MIOUT; BY _IMPUTATION_ TRT; RUN;
PR OC MI DATA = ALL4_MIOUT OUT = ALL5_MIOUT NIMPUTE =1 SEED 

=123;
BY _IMPUTATION_ TRT;
MONOTONE METHOD=REG;
VAR BASVAL YOBS1 YOBS2 YOBS3;

RUN;

CODE FRAGMENT 15.5 SAS Code for Multiple Imputation 
Analysis. Imputing Data for Baseline Covariates Using MCMC

/* using MCMC to first impute baseline covariates X1, X2, 
X3, basval and other missing values deviating from monotone 
pattern and then perform a single imputation to each 
monotone sets by Bayesian regression to produce complete 
data sets */

PR OC MI DATA = ALL2_TRANSP3 OUT = ALL4_MIOUT NIMPUTE=1000 
SEED=123;
BY TRT;
MCMC IMPUTE = MONOTONE;
VAR X1 X2 X3 BASVAL YOBS1 YOBS2 YOBS3;
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RUN;
PROC SORT DATA=ALL4_MIOUT; BY _IMPUTATION_ TRT; RUN;
PR OC MI DATA = ALL4_MIOUT OUT = ALL5_MIOUT NIMPUTE=1 

SEED=123;
BY _IMPUTATION_ TRT;
MONOTONE METHOD=REG;
VAR X1 X2 X3 BASVAL YOBS1 YOBS2 YOBS3;

RUN;

CODE FRAGMENT 15.6 SAS Code for an Inclusive 
Multiple Imputation Strategy: Joint Imputation 

of Changes in HAMD and PGIIMP 

a) Imputing from joint multivariate normal distribution

PR OC MI DATA = ALL3_TRANSP OUT = ALL3_MIOUT NIMPUTE=1000 
SEED=123;
BY TRT;
MONOTONE METHOD=REG;
VAR BASVAL CHG1 PGIIMP1 CHG2 PGIIMP2 CHG3 ;

RUN;

b)  multiple imputation using normal regression for changes 
in HAMD and ordinal logistic regression for PGIIMP*/

PR OC MI DATA = ALL3_TRANSP OUT = ALL3_MIOUT NIMPUTE=1000 
SEED=123;
BY TRT;
CLASS PGIIMPGR1 PGIIMPGR2;
VAR BASVAL CHG1 PGIIMPGR1 CHG2 PGIIMPGR2 CHG3;
MONOTONE REG (CHG1=BASVAL);
MONOTONE LOGISTIC (PGIIMPGR1 =CHG1 BASVAL);
MONOTONE REG (CHG2= PGIIMPGR1 CHG1 BASVAL);
MO NOTONE LOGISTIC (PGIIMPGR2= CHG2 PGIIMPGR1 CHG1 BASVAL/

DETAILS);
MONOTONE REG (CHG3= PGIIMPGR2 CHG2 PGIIMPGR1 CHG1 BASVAL);

RUN; 

CODE FRAGMENT 15.7 Example of R Code for 
an Inclusive Multiple Imputation Strategy: Joint 
Imputation of Changes in HAMD and PGIIMP 

## ## joint imputation of continuous and 
categorical(ordered) outcomes

ha mdpgi<-widedata[,c("trt","basval","CHG1","PGIIMPGR1","CHG
2","PGIIMPGR2","CHG3")]

# make PGIIMP ordered factors
hamdpgi$PGIIMPGR1<-ordered(hamdpgi$PGIIMPGR1)
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hamdpgi$PGIIMPGR2<-ordered(hamdpgi$PGIIMPGR2)

imp<-mice(hamdpgi, seed=123,visitSequence=c(5,6,7))
#  fits linear model for change in HAMD at Time 3 to each 

imputed data set
fit<-with(imp, lm(CHG3~trt+basval))

# pooled inference using Rubin's rules

est<-pool(fit)
summary(est)

15.9 Summary

Multiple imputation (MI) is a popular and accessible method of model-based 
imputation. The three basic steps to MI include imputation, analysis, and 
inference. These steps can be applied to outcomes with a variety of distri-
butions, including normally distributed, categorical, and time to event (e.g., 
with piece-wise exponential hazard) outcomes.

If MI is implemented using the same imputation and analysis model, and 
the model is the same as the analysis model used in a maximum likelihood-
based (ML) analysis, MI and ML will yield asymptotically similar point esti-
mates, but ML will be somewhat more efficient. However, with distinct steps 
for imputation and analysis, MI has more flexibility than other methods. 
This flexibility can be exploited in a number of situations.

Scenarios where MI is particularly useful include those when covariates 
are missing, when data are not normally distributed such that likelihood-
based analyses are difficult to implement, and when inclusive modeling 
strategies are used to help account for missing data. Multiple imputation is 
also very useful for sensitivity analyses. See Chapter 18 for further details on 
using MI for sensitivity analyses.
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16
Inverse Probability Weighted 
Generalized Estimated Equations

16.1 Introduction

Although inverse probability weighting (IPW) can be applied in a variety of 
settings, focus here is on using IPW in conjunction with generalized estimat-
ing equations (GEEs) to construct weighted GEE (wGEE). Technical details 
on estimating parameters via GEE were presented in Section 5.5.3. A stan-
dard reference for wGEE is Robins et al. (1995). 

GEEs are nonlikelihood-based equations and parameter estimates (e.g., 
of treatment effect) are biased under MAR (Robins et al. 1995). The stron-
ger assumption of MCAR is required because the root of the estimating 
 equation expectation is not equal (in general) to the true parameters under-
lying the outcome process, unless the missingness is MCAR. The require-
ment of MCAR stems from the parameters of the working correlation 
matrix in GEE being  estimated based on what is essentially a complete case 
analysis. Only subjects that were observed at both visits t1 and t2 contribute 
to the estimate of within-subject correlation between visits t1and t2. When 
within subject correlations are not used in computing point estimates (the 
case of  “independent working correlation structures”), bias under MAR is 
even more apparent since GEE point estimates of treatment effect at each 
time point are merely treatment contrasts evaluated for complete cases at a 
given evaluation visit.

The bias in GEE from MAR missingness can be removed by incorporating 
weights into the GEE (wGEE). The weights are based on the inverse probabil-
ity of observing the dropout patterns that were present in the data. The idea 
of weighting can be traced back to the well-known Horvitz and Thompson 
(1952) inverse probability (IP) estimator. 
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16.2 Technical Details—Inverse Probability Weighting

16.2.1 General Considerations

The motivation behind IPW is to correct for bias caused by nonrandom 
 selection (dropout). Assume interest is in computing the expected value of 
discrete random variable, Y, in a finite population of N elements, and Y can 
assume only two possible values: y1 and y2. The population mean is com-
puted as a weighted average 

 µ = =
+

( ) 1 1 2 2E Y
N y N y

N
 

Now assume that a selection mechanism is applied to the population 
that removes some elements y1 with probability of selection π1 = 1/2, while 

not affecting the selection of y2 (π2 = 1). Therefore, only 
2

1N  occurrences of 

y1 are  expected to be observed, while N2 occurrences of y2 are observed. 
Assume that the relative frequencies of y1 and y2 in the population equal 
these expected values (i.e., ignoring the randomness in the dropout pro-
cess). Then, when estimating the population mean based on the mean from 
incomplete data (“observed case” or “complete case” estimator, ˆ ccµ ) the 
expectation of this estimator is
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Of course, this estimator is biased because in general µ ≠( ˆ ) ( )E E Ycc . In this 
example, the selection probabilities are known and adjustments for the selec-
tion bias can be made by associating y1 and y2 with weights computed as the 
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With π1 = 1/2 the inverse is 2/1, which amounts to essentially counting 
each observed value of y1 twice because the probability of observing each 
instance of y1 from the population is 1/2. If π1 = 2/3, then each occurrence of 
y1 would be given a weight of 3/2 = 1.5. In actual clinical trial data the prob-
abilities are unknown and must be estimated from sample data.



195Inverse Probability Weighted Generalized Estimated Equations

If the selection probability for elements y1 were π1 = 0 then all y1 are missing 
and IPW cannot be used. Hence, an important requirement of IPW is that all 
possible values of the outcome variable have nonzero probability of being 
in the observed population. If some values have very low probabilities it is 
unlikely that these values would be observed in a sample. In such cases IPW 
may lead to bias (if some values are not observed in the sample) and/or high 
variance (if some values are observed but have low estimated probabilities 
resulting in very large weights).

To illustrate a general use of IPW, let yi, i = 1,..., N denote realizations of 
an outcome variable Y in a complete data set, yi,obs, i = 1,..., N1 and ri is the 
observed values of missingness indicator variable R so that for subject i.
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Assume that the true selection probabilities (or probabilities of nonmiss-
ingness) are known, πi = Pr(Ri = 1). Note that in general πi may be a function 
of yi; therefore, πi’s are conditional probabilities πi = Pr(Ri = 1|Y = yi). The IPW 
estimator can be defined as
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Equivalently, the expression can be written in terms of the complete data 
outcome as

 ∑µ =
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Although some values of yi are not observed, the product yiri is fully 
observed. To show that µ̂IPW is an unbiased estimator of μ = E(Y) its expecta-
tion with respect to the joint distribution of Y and R is needed. The law of 
conditional iterated expectations can be exploited to allow decomposition 
of  the joint expectation as EY,R() = EY{ER|Y()}. Then
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Therefore, as seen from the third line, assigning weights that are the 
inverse of the probability of selecting the observations recovers the mean 
expected in the complete data. In practice, the weighted sum of observed 
values is divided by the sum of weights rather than by N.
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In expectation, these are equivalent:
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Therefore, the relative subject-specific weights (summing up to 1) can be 
defined as
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Once IPW estimates of the expected outcome for each treatment 
group ( )µ =ˆ , 0,1( )

IPW tt  are obtained, treatment effects can be estimated as, 

ˆ ˆIPW IPW
(1)

IPW
(0)θ = µ − µ

�
.

As an initial illustration, consider estimating treatment effect via inverse 
probably weighting of the completers (subjects with no missing data) in 
the small example data set with dropout. For this illustration, subjects are 
considered to have only one observation, the Time 3 assessment. The IPW 
weights are not known, but can be estimated using logistic regression. For 
this example probability of dropout was estimated using a model applied to 
data pooled across visits with the dropout indicator as the response variable. 
Predictor variables included change from baseline at the previous visit, base-
line score, and treatment. The inverse weights estimated from this model 
were applied to the subset of subjects that completed the trial (sometimes 
called inverse probability weighted complete case or IPWCC estimator) in 
order to estimate the mean that would have been observed if all patients had 
completed. 

For this example, the probabilities of completing the trial are computed as 
a product of conditional probabilities of completing each of the visits. That is, 

 πi = Pr(R1i = 1) Pr(R2i = 1|R1i = 1) Pr(R3i = 1|R1i = 1, R2i = 1)
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Because all subjects completed the first post-baseline visit it is assumed 
the Pr(R1i = 1) = 1. Estimates of conditional probabilities are obtained as func-
tions of observed outcomes and other baseline covariates (e.g., using logistic 
regression) as will be shown in detail in the next sections. 

Weighting removes selection bias by giving larger weight to outcomes 
that  are underrepresented in the observed data compared to what would 
have been observed if there were no dropouts. Conversely, smaller weights 
are given to observed values that are “overrepresented.” Typically, as is the 
case with the small example dataset with dropout, subjects with poorer 
 efficacy are less likely to be observed. Therefore, subjects with poor out-
comes are underrepresented in the observed data and their weight should 
be larger compared to those who had larger improvements. 

As expected, weights estimated from the small example data set are larger 
for subjects with worse outcomes (changes from baseline closer to zero) and 
smaller for subjects with better outcome (larger negative changes from base-
line). The left panel of Figure 16.1 illustrates this relationship. The right panel 
is a plot of visit-wise mean changes from baseline for subjects who completed 
the trial divided into two strata; the first stratum is subjects whose esti-
mated weights were less than the median and the second stratum is subjects 
with weights larger than the median. The figure clearly shows subjects with 
larger weights had worse marginal means than those with smaller weights. 
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FIGURE 16.1
Relationship between weights and changes from baseline for completers. (a) Scatter plot 
of subject weights versus changes from baseline to visit 3 and (b) right panel is mean change 
 profiles for completers with weights larger than median (thick line) and lower than the 
median (thin line).
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16.2.2 Specific Implementations

The previous section illustrated IPW for an ANCOVA model with a single 
outcome per subject. Inverse probability weighting is now considered in 
the context of repeated measures analysis via weighted GEE. Inverse prob-
ability weights are commonly calculated in one of the two ways. Either 
one weight is given per subject and applied to all visits, thus reflecting 
the probability of the observed dropout pattern; or, each subject gets a 
unique weight at each visit, thus reflecting the visit-wise probabilities of 
dropout.

Robins and Rotnitzky (1995) proposed inverse probability weights that 
change by visit (observation-level weighting). The weights can be incorpo-
rated in the working covariance model as the elements of a diagonal ni × ni 
weight matrix Wi

 ( )
1
2

1
2

1
2

1
2V A W R W Ai ii i i

= φ α
− −  

The weights are computed for each subject at each time point in a manner 
similar to how the weights for the last visit were computed in the weighted 
analysis of completers in the previous section. For example, Subject 9 had 
two completed visits; hence the matrix W is a 2 × 2 diagonal matrix with 
weights based on estimated probabilities as follows (subject index omitted 
whenever it does not cause confusion)

 =
π

=
π

1
ˆ

,
1
ˆ1

1
2
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w w  

 ( )π = =ˆ Pr 11 1R x
�

 

 ˆ Pr( 1 ) Pr 1 1, ,2 1 2 1 1R x R R x y( )π = = = =� �  

Here again π =ˆ 11 , and correspondingly, �π = = =R R x yˆ Pr( 1 1, , )2 2 1 1 , because 
no dropouts had occurred prior to the first post-baseline visit. [Note we 
use Pr( 1 1, , )2 1 1R R x y= =  as a shorthand for Pr( 1 1, , )2 1 1 1R R X x Y y= = = = ]. 
The weights can change from visit to visit reflecting the changing probabil-
ity of a subject remaining in the study given the previous data. 

Fitzmaurice et al. (1995) proposed subject-level weighting wherein a single 
weight is computed for each subject that is used at every visit (repeated for 
all diagonal elements of the Wi matrix). The weight is an inverse of the esti-
mated probability ˆ ( )dπ  of observing the dropout pattern d that was actually 
observed for that subject. Here the pattern d = 1,..., T + 1 indicates the next 
time point after patient was observed for the last time. That is, for a subject 
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who was last seen at time t, d = t + 1. For completers, d = T + 1, where T indi-
cates the last scheduled visit.

The working covariance model is then expressed as

 ˆ ( )( )
1
2

1
2V A R Ai i

d
i i

= π φ α  

As a result, the weighted estimating equations are obtained from the origi-
nal estimating equations simply by multiplying each subject’s contributions 
to the estimating equations by the inverse probability of his/her observed 
dropout pattern = πwi i

d1/ˆ ( ). 
To illustrate, for a subject that completed all the scheduled visits, the weight 

is computed exactly as weights for completers at the last visit were computed 
in the previous section. That is,

 � � �π = = = = = = =R x R R x y R R R x y ydˆ Pr( 1 ) Pr( 1 1, , ) Pr( 1 1, 1, , , )( )
1 2 1 1 3 1 2 1 2  

For subjects who did not complete the trial, the probability of the 
observed pattern is computed as the probability of that subject remaining 
in the trial until the last observed visit and discontinuing right after. As an 
example, for Subject 9, the probability of the observed dropout pattern is 
computed as 

 � � �π = = = = − = = = R x R R x y R R R x y ydˆ Pr( 1 ) Pr( 1 1, , ) 1 Pr( 1 1, 1, , , )( )
1 2 1 1 3 1 2 1 2  

16.3 Example

With the building blocks of IPW in place, a wGEE analysis of the small exam-
ple dataset with dropout can be considered. The goal is to estimate treatment 
effects using a weighted GEE model, with weights reflecting the selection 
probability; that is the probability of completing all three visits. This exam-
ple uses the approach of Fitzmaurice et al. (1995) introduced in 16.2.2. Subject 
weights are computed based on inverse probability of observed dropout 
 pattern ˆ ( )

i
d

π .

After estimating the probabilities ˆ iπ , the weights are computed as 
1

ˆ ( )wi
i
d=

π
.

The weights are then included in the dataset as additional variable and 
the weighted analysis is conducted, for example, via SAS PROC GENMOD 
(SAS 2013). The weights are data-dependent, but the analysis assumes the 
weights are known, similar to the assumption that variance components 
are known in a standard mixed-effects model analysis. The robust sandwich 
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estimates of standard errors provided by the GEE are still valid, although 
conservative (Robins et al. 1995). Resampling methods can be used to obtain 
non conservative estimates. 

It is important to recognize that wGEE provides valid estimates under 
MAR, assuming that the model for dropout is correctly specified. As previ-
ously noted, estimating weights can be challenging when some of the true 
probabilities of observed patterns are close to 0. This can result in large 
weights and unstable estimates of treatment effects. Truncation and stratifi-
cation can be used to stabilize weights. Also more stable versions of weights 
have been proposed (Hernàn et al. 2000). 

SAS code for obtaining subject-level and observational-level inverse 
probability weights are listed in Section 16.4 (Code Fragment 16.1). SAS 
code to implement wGEE analyses via PROC GENMOD using the calcu-
lated IPW weights is listed in Section 16.4 (Code Fragment 16.2), followed 
by a code fragment for experimental procedure PROC GEE that is avail-
able in SAS/STAT 13.2 (SAS 2013) wherein the weights are obtained as part 
of the PROC. 

Results for the wGEE analyses using subject-level weights are compared 
to results from an unweighted GEE and results from complete data in 
Table 16.1. It is important to interpret these results as just one realization 
from a stochastic process. If the comparisons were replicated many times 
under the same conditions—including missing data arising from an MAR 
mechanism—the average of the lsmeans and treatment contrasts across the 
repeated samples would be asymptotically equal for complete data, incom-
plete data analyzed via direct likelihood, MI, or wGEE with an appropriate 
dropout model. Standard errors would be consistently greater in incom-
plete data.

The wGEE analysis yielded a point estimate for the treatment contrast at 
Time = 3 in-between the result obtained from the analysis of complete cases 

TABLE 16.1

Results from GEE and wGEE Analyses of the Small Example Data Set

Treatment Time

Complete Data GEE Incomplete Data wGEE Incomplete Data

LSMEANS SE LSMEANS SE LSMEANS SE

1 1 −4.13 0.91 −4.10 0.76 −4.38 0.83
1 2 −6.70 0.93 −6.70 1.04 −5.64 0.87
1 3 −9.86 1.05 −10.17 1.11 −9.58 1.08
2 1 −5.32 0.91 −5.29 0.97 −4.88 0.88
2 2 −8.70 0.93 −8.29 0.96 −6.09 1.10
2 3 −13.26 1.05 −13.10 1.27 −12.71 1.28
Endpoint 
Treatment 
Difference

3.39 1.49 
(p = 0.0274)

2.92 1.73 
(p = 0.0905)

3.13 1.71 
(p = 0.0670)



201Inverse Probability Weighted Generalized Estimated Equations

and from complete data. As expected, the standard error for the Time 3 treat-
ment contrast from wGEE with incomplete data was larger than the standard 
error from complete data and slightly larger than the standard error from 
the direct likelihood analysis of incomplete data (see Table 14.1). The relaxed 
distributional assumptions of GEE results in a slightly less  efficient analyses 
than likelihood-based methods. 

16.4 Code Fragments

CODE FRAGMENT 16.1 SAS Code for 
Obtaining Inverse Probability Weights

 /*  Create change at previous visit variable and dropout 
indicator variable */

PROC SORT DATA=ALL2; BY SUBJECT TIME; RUN;
DATA FOR_WGEE;
SET ALL2;
RETAIN DROP CHANGE_LAG1;
BY SUBJECT TIME;
IF FIRST.SUBJECT THEN DO;
DROP=0;

CHANGE_LAG1=.;
END;
IF DROP=1 THEN DELETE;
IF CHGDROP=. THEN DROP=1;
OUTPUT;
CHANGE_LAG1=CHGDROP;

RUN;

/* Logistic regression analysis to obtain probabilities of 
dropping, Pr(DROP=1)*/ 
PROC LOGISTIC DATA=FOR_WGEE DESC; 
CLASS TRT; 
MODEL DROP=TRT BASVAL CHANGE_LAG1;
OUTPUT OUT =PRED P=PRED;

RUN;

/* Calculate and merge weights into data set */
DATA WEIGHTS_SUB (DROP=WEIGHT_OBS PB_OBS) 

WEIGHTS_OBS (DROP=WEIGHT_SUB PB_SUB);
SET PRED;
BY SUBJECT TIME;
RETAIN PB_SUB PB_OBS;
IF FIRST.SUBJECT THEN DO;
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PB _OBS =1; /* PROB. OF OBSERVING SUBJECT AT GIVEN TIME 
- FOR OBSERVATIONAL WEIGHTS */

PB _SUB =1; /* PROB. OF OBSERVED DROPOUT PATTERN - FOR 
SUBJECT WEIGHTS */

END; ELSE DO;
IF  DROP THEN PB_SUB =PB_SUB * PRED; ELSE PB_SUB =PB_SUB 

*(1-PRED);
PB_OBS =PB_OBS * (1-PRED);

END;

WEIGHT_OBS=1/PB_OBS ; 
OUTPUT WEIGHTS_OBS;
IF LAST.SUBJECT THEN DO;
WEIGHT_SUB =1/PB_SUB;
OUTPUT WEIGHTS_SUB;

END;
RUN;

PROC SORT DATA=FOR_WGEE; BY SUBJECT; RUN;
PROC SORT DATA=WEIGHTS_SUB; BY SUBJECT; RUN;

DATA FOR_WGEE;*

MERGE FOR_WGEE
WEIGHTS_SUB (KEEP=SUBJECT WEIGHT_SUB);

BY SUBJECT;
RUN;

CODE FRAGMENT 16.2 SAS Code for Weighted 
GEE Analysis Using the PROC GENMOD

ODS OUTPUT ESTIMATES=ES_CHDR_WGEE_IND
LSMEANS=LS_CHDR_WGEE_IND;

PROC GENMOD DATA=FOR_WGEE (WHERE=(CHGDROP NE .));
CLASS TRT TIME SUBJECT;
MO DEL CHGDROP= BASVAL TRT TIME TRT*TIME /LINK=ID 

DIST=NORMAL;
WEIGHT WEIGHT_XXX1;
REPEATED SUBJECT=SUBJECT /TYPE=IND;
ESTIMATE "TRT EFFECT AT VIS 3" TRT −1 1 TRT*TIME 0 0 −1 0 0 1;
LSMEANS TRT*TIME; 

RUN;

 1.  Use WEIGHT_SUB for subject-level weights and WEIGHT_OBS for 
 observation-level weights 

* Here we show creating analysis data set for wGEE using subject weights. Analysis data with 
observation-level weights is created similarly by merging with WEIGHTS_OBS data set.
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CODE FRAGMENT 16.3 SAS Code for Weighted GEE 
Analysis Using the Experimental PROC GEE

PROC GEE DATA=ALL2 DESC PLOTS=HISTOGRAM;
CLASS SUBJECT TRT TIME;
MISSMODEL PREVY TRT BASVAL / TYPE=SUBLEVEL;
MO DEL CHGDROP = BASVAL TRT TIME TRT*TIME BASVAL*TIME / 

DIST=NORMAL LINK=ID;
REPEATED SUBJECT=SUBJECT / WITHIN=TIME CORR=IND;

RUN;

16.5 Summary

Although GEE is valid only under MCAR, inverse probability weighting 
(IPW) can correct for MAR, provided an appropriate model for the missing-
ness process (dropout) is used whereby missingness depends on observed 
outcomes but not further on unobserved outcomes. The weights are based on 
the inverse probability of dropout and in effect create a pseudo-population 
of data that would have been observed with no missing data in an infinitely 
large trial.

Weighting can be at the subject level, with one weight per subject reflect-
ing the inverse probability of observing the dropout pattern; or, weighting 
can be at the observation level, with one weight per subject per visit that 
reflects the changing probability of dropout as outcomes evolve over time.

As with standard GEE, in wGEE no assumptions about the correla-
tion structure are required and therefore wGEE yields semi-parametric 
 estimators. The wGEE estimates are generally not as efficient as maximum 
likelihood (parametric) estimators obtained using the correct model, but 
they remain consistent whereas maximum likelihood estimators from a 
 misspecified parametric model are inconsistent.
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17
Doubly Robust Methods

17.1 Introduction

Common references for the emerging area of doubly robust (DR) methods 
include Carpenter et al. (2006) and Tsiatis (2006). The genesis of DR methods 
can be seen by building from the properties of weighted generalized esti-
mating equations (wGEEs), which are briefly reviewed below.

Although GEE is valid only under missing completely at random (MCAR), 
inverse probability weighting (IPW) can correct for missing at random 
(MAR), provided an appropriate model for the missingness process (drop-
out) is used whereby missingness depends on observed outcomes but not 
further on unobserved outcomes (Molenberghs and Kenward 2007). The 
wGEEs yield semi-parametric estimators because they do not model the 
entire distribution of the outcome values. These semi-parametric estimates 
are generally not as efficient as maximum likelihood estimators obtained 
using the correct model, but they remain consistent when maximum like-
lihood estimators from a misspecified parametric model are inconsistent 
(Molenberghs and Kenward 2007).

Therefore, a motivation for DR methods is to improve the efficiency of 
wGEEs by augmenting the estimating equations with the predicted distri-
bution of the unobserved data, given the observed data (Molenberghs and 
Kenward 2007). Although augmentation is motivated by efficiency, it also 
introduces the property of double robustness.

To understand double robustness, consider that efficient IPW estimators 
require three models: (1) a substantive (analysis) model that relates the out-
come to explanatory variables and/or covariates; (2) a model for the prob-
ability of observing the data (usually a logistic model of some form); and 
(3) a model for the joint distribution of the partially and fully observed 
data, which is compatible with the substantive model (1) (Molenberghs 
and Kenward 2007). 

If model (1) is wrong, for example, because a key confounder is omitted, 
then estimates of all parameters will typically be inconsistent. The intriguing 
property of augmented wGEE is that if either model (2) or model (3) is wrong, 
but not both, the estimators in model (1) are still consistent (Molenberghs 
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and Kenward 2007). However, DR methods are fairly new with few rigorous 
simulation studies or real data applications in the literature. Refer Robins 
et al. (1995), Carpenter et al. (2006), Tsiatis (2006) and Daniel and Kenward 
(2012) for additional details.

17.2 Technical Details

In Section 16.2, inverse probability estimation was explained starting with 
the simple case of estimating the sample mean of an outcome variable Y 
when some of its values yi, i = 1,...,N, are missing (indicated with ri = 0). 
Subsequently, IPW was extended to repeated measures. A similar approach 
is used here, with the ideas of DR estimation building on the results of 
Chapter 16.

To fix ideas, assume that missingness is MAR and the probability that Y is 
missing does not depend on unobserved vales of Y, given covariates X (that 
includes various pretreatment covariates). Recall that an unbiased estimate 
of treatment means can be obtained using the inverse probability estimator:

 ∑µ =
π
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N

y ri i
ii

N

ˆ 1 1
IPW

1

 

where πi are probabilities of having observed outcome (known or estimated 
from available data). Note that under MAR (for this example) πi = π(xi) = 
Pr(R = 1|X = xi) is a known or estimated function of covariates; therefore, 
we can write π = π(x). The consistency of the IPW estimator follows from 
the assumption that the model for probability of missingness was correctly 
specified. If that is not the case, probabilities iπ�  estimated from an incor-
rect model will converge (as N becomes large) to some “misspecified” func-
tion x( )π�� . As a result, the estimate of population mean would in general be 
biased. The augmented inverse probability weighted estimator of sample mean 
µ̂AIPW aims to protect against bias due to misspecification of the weight by 
combining IPW with an outcome (or imputation) model m(x)
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We emphasize that this requires estimation of models for (1) probability 
of being observed and (2) outcome value (whether missing or observed) 
by placing hats over iπ�  and mi� . Therefore, the estimator is an average of 
N  “augmented values”, =y i Ni , 1, ..., .�  Note that, unlike the IPW estimator, 
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the augmented IPW (AIPW) estimator receives nonzero contribution from 
patients with missing values (ri = 0), specifically such patients contribute with 
their imputed or predicted value, mi� , estimated from the outcome model m(x).

The AIPW estimator is often written in the following alternative forms 
that can be easily obtained from the original one by re-arranging terms:
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The last representation is particularly useful for demonstrating the  double 
robustness property of the AIPW estimator: the estimator is consistent as 
long as at least one of the two models is correctly specified. To illustrate, 
assume that the sample size is large so that the estimators iπ�  and mi�  converge 
(in probability) to their large sample counterparts, whether they are correctly 
or incorrectly specified functions of observed data. 

Also assume that the model for probability of missingness is correctly 
specified, π(x) and the outcome model is a (possibly) misspecified function 
m x( )�� . Applying the law of conditional iterated expectations to a joint distri-
bution of random variables R, X, Y as ER,X,Y = EX,Y{ER|X,Y()}, the expectation of 
individual augmented values can be written as follows (after factoring out 
Y m X( )− �� , which is a constant conditional on X and Y):
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The second term vanishes regardless of what E Y m XXY ( )( )− ��  may be 
because under MAR E(R|X = x, Y = y) = Pr(R = 1|X = x) = π(x), resulting in 
consistent estimation of the population mean μ.

Similarly, assuming that the model for probability of missingness is 
 possibly misspecified x( )π��  and for outcome model the true function m(x) 
is estimated, after applying the law of conditional iterated expectations 
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ER,X,Y = ER,X{EY|R,X()}, the expectation of individual augmented values can be 
written as follows
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Again, the second term vanishes in expectation because under MAR the 
distribution of outcomes conditional on observed data is the same for sub-
jects with observed (R = 1) and unobserved (R = 0) outcome values; hence, 
E(Y|X = x, R = r) = E(Y|X = x) = m(x).

To summarize, the idea of DR estimation is to combine the strengths of 
two models: for probability of missingness and for imputing missing val-
ues. Both models can be estimated under the assumption of MAR utilizing 
observed patient-level data which, however, may be undesirable or awk-
ward to include in the direct maximum likelihood-based modeling of the 
parameter of interest (e.g., treatment contrast at specific time point). The DR 
estimation via AIPW results in two types of gain: (1) protection against one 
of the two models being misspecified (doubly robustness) and (2) increased 
efficiency. While intuitively the increase in efficiency may appear a natural 
outcome of using additional information (predicted values for subjects with 
missing outcomes), it relies on sophisticated theory of semi-parametric esti-
mation (Robins and Rotnitzky 1995; Tsiatis 2006), which is outside the scope 
of this book.

Despite its intuitive appeal the DR estimators also received a great deal of 
criticism, its opponents arguing that in situations when both models may be 
“slightly” misspecified (a typical situation with real data) the doubly robust-
ness property may not translate in any gain, especially given inherent insta-
bility of IPW. For example, as argued in Kang and Schafer (2009), “two wrong 
models are not better than one” (see also a different view in Cao et al. 2009 
and Tsiatis et al. 2011 who proposed improved DB estimators).

As in the case of IPW, AIPW estimator previously introduced in the con-
text of estimating population means gives rise to AIPW-based (generalized) 
estimating equations. Their general form is quite simple, it starts with IPW 
estimated equations (Chapter 16) and adds some function of the data with 
zero expectation
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Like the AIPW estimator of population mean, the AIPW estimating equa-
tions have two terms: one is based on contributions from observed data only 
(inversely weighted by πi) and the second is based on contributions from 
both observed and unobserved cases. The zero mean function ϕ(y, x) is then 
constructed to have minimal variance following semi-parametric theory of 
Robins and Rotnitzky (1995), resulting in conditional expectation of the score 
function U(yi, xi,|θ) on the observed data Yobs, X, that can be loosely termed 
“imputation model”. However, particular implementations, especially exten-
sions for longitudinal data, are not straightforward and selection of the best 
augmented function may be not obvious (see Karpenter and Kenward 2006 
for applying DR estimators in the context of missing covariate and Tsiatis 
et al. 2011 for modeling longitudinal outcomes). 

17.3 Specific Implementations

Specific implementation of AIPW requires the selection of (1) a substantive 
model of interest; (2) a missing data model for computing IPW; and (3) an 
outcome (imputation) model. In the context of data analysis from clinical 
trials, the substantive model would be the one for evaluating the treatment 
effect (e.g., treatment contrast at the last scheduled visit). The missingness 
process can be modeled using logistic regression. The outcome model typi-
cally would be estimated using repeated measures analysis. Both (2) and 
(3) can be modeled using “inclusive” strategies, incorporating a large num-
ber of potentially relevant covariates, whereas model (1) is typically focused 
on the primary estimand (parameter) of interest.

Consider a simple application of AIPW estimating equations in the context 
of the small example data set that has three post-baseline visits, which is a 
natural extension of the example of the IPW estimator of treatment effect in 
completers (IPW complete-case, or IPWCC) from Section 16.2.1 (see Seaman 
and Copas 2009, for other implementation).

Here, the substantive model (1) will be an ANCOVA for outcome at Time 3 
with terms for intercept, baseline covariate (Y0) and treatment indicator (Z),

 E(Y3|Z, Y0) = β0 + β1Z + β2Y0. 

Let xi be a row vector comprising the constant 1 and two covariates: 
xi = {1, Yi0, Zi}. A possible augmented estimating equations can be 
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Here (similarly to computing IPW weights for completers for the example 
shown in Section 16.2), the probability of being observed at the last visit 3iπ�  is 
estimated as a function of baseline and available post-baseline data

 π3(xi , yi,obs) = Pr(Ri3 = 1|Ri2 = 1, xi,    yi1, yi2) Pr(Ri2 = 1|xi, yi1)

The probabilities in the chain product can be estimated from two separate 
logistic regressions for dropouts at Times 2 and 3 (recall that there are no 
dropouts in the first post-baseline visit, Pr(Ri1 = 1) = 1).

Solving the above augmented estimating equations can be challenging. 
Let | , , .3 3 1 2m E Y x y yi i i i i( )=� �  It is easy to see that the equations can be written 
by rearranging terms as 
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If the outcome model m3(x, y1, y2) is correctly specified, the first term van-
ishes in expectation and the roots of the equations (in expectation) must be 
the true values of the parameter vector β. With some particular choices of 
estimated mean function 3m� , the elements of the first term (shown below as a 
3 × 1 vector S) can be made exactly equal to zero which, as seen shortly, would 
greatly simplify the estimation of parameter β 
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Obviously, S = 0 can be enforced by choosing 3mi�  to be the solution of 
the above-mentioned IPW estimating equations. However, note that 3mi�  is 
sought as a function of a broader set of covariates including all observed post-
baseline outcomes, not just those included in the covariate set X. To this end, 
mi3 is estimated as ( )=m m x y yi i ii , ,

IPW
3 1 23

� �  by using the weighted estimating 
equations as a linear function in X, Y1, and Y2
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Now that the elements of S are made exactly zero, the original augmented 
equations for estimating β′ s simplify to (unweighted) estimating equations

 ∑ ( )− β =
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where mi3
IPW�  are predicted outcomes at post-baseline visit 3 for each subject, 

either with observed or missing outcomes. 
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However, one caveat is that the predictive model m3 includes as covariates 
(possibly missing) intermediate outcomes at Time 2, Y2. Now, we can apply 
(recursively) the same idea and use similar weighted estimating equations 
for estimating mi2

IPW�  
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Here, 2iπ�  is the estimated probability of the i-th subject not missing at 
Time 2. Since no outcomes Y1 are missing at Time 1, our “recursion” stops 

here and we will be able to compute ( )= =� � , , , 1, ...,3
IPW

3 1 2m m x y y i Ni i i i , where 

the missing values for Y2 will be replaced with predicted ( )=� � ,2
IPW

2 1m m x yi i i .
This gives rise to the following general algorithm, suggested by 

Vansteelandt et al. (2010) for analysis of data with missing covariates and 
very similar to that implemented for repeated measures recently in O’Kelly 
and Ratitch (2014, section 8.4, pp. 377–378).

 1. Compute subject-specific probabilities of being observed at the spe-
cific time point ,1 2x xit ( )π�  using a full set of covariates partitioned 
into two subsets: X1 (intended for modeling treatment effect) and X2 
(including baseline and post-baseline variables observed prior to the 
time point t when treatment assessment is made).

 2. Predict outcome ( )m x xit ,
IPW

1 2�  at time point t for all subjects, whether 
observed or missing the outcome, using the full set of covariates and 
inverse probability weights from Step 1 (e.g., via appropriate general-
ized linear model). If some post-baseline covariates in the set X2 are 
missing, iterate Steps 1 and 2 to impute them taking advantage of 
monotone patterns of missing data.

 3. Use predicted values mit
IPW�  from Step 2 as new responses to fit a 

generalized linear model (GLM) on covariates from the set X1 and 
obtain estimates of the coefficients.

 4. Compute standard errors for coefficients of the model in Step 3 via 
bootstrapping the entire modeling strategy (Steps 1–3).

Details of this analytic strategy are illustrated in the next section using appli-
cation to the example data set.

17.4 Example

In this section, DR estimation outlined in Section 17.3 is applied to the small 
example data set to evaluate the treatment effect at the last scheduled visit. 
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This analysis involves the following steps (the SAS code is included in 
Section 17.5).

 1. Estimating probabilities of discontinuation (and remaining on treat-
ment) at Times 2 and 3 using logistic regression models. Specifically, 
the model for probability Pr 1| ,2 2 1R x yi i i i( )π = =��  of remaining on 
treatment by Time 2 included terms for baseline severity score, 
changes in outcome from baseline at Time 1, treatment indicator 
and all interactions of treatment with other covariates. Only subjects 
who completed the first post-baseline visit contributed to this esti-
mate (which in our case were all randomized subjects). Probability of 
remaining on treatment at Time 3 was estimated as a product of con-
ditional probabilities Pr 1| 1, , ,3 2 3 2 1 2R R x y yi i i i i i i( )π = π × = =�� � , where 
the second conditional probability was estimated from a separate 
logistic regression with terms for the baseline score, changes from 
baseline at Times 1 and 2, treatment indicator and all treatment-by-
covariate interactions. Only subjects completing the first two post-
baseline visits contributed to this model.

 2. Imputing missing values for the changes in outcome variable at 
Time 2 with its predicted values from the linear regression model 
m2(xi, yi1) estimated using inverse probability weights, 1/ 2wi i= π� , 
with the same terms that were used for modeling 2iπ�  (although this 
is not essential).

 3. Fitting a linear regression model for completers (patients with non-
missing outcomes at visit 3) , ,3 1 2

*m x y yi i i( ) with weights, = π�1/ 3wi i , 
and with the same terms that were used for modeling 3iπ� . Missing 
outcomes for changes from baseline to Time 2 were replaced with 
predicted values from the previous step (which is emphasized in the 
notation with an asterisk, 2

*yi ).
 4. Finally, we use predicted values , 1, ...,3m i Ni =� , obtained at previous 

step as “new data” to fit an ANCOVA model with baseline score and 
treatment indicator as covariates.

 5. The point estimate for the treatment contrast from the model in #4 is 
the final estimate of treatment effect at Time 3 (shown in Table 17.1), 
θ�AIPW. Clearly, the standard errors and p-values reported by ANCOVA 
(on the basis of full sample of N subjects) are severely biased down-
ward, as they do not account for the estimation done in previous steps, 
in particular, the uncertainty due to imputation of missing values.

 6. We obtain valid standard errors and confidence intervals by boot-
strap (shown in Table 17.1). Each bootstrap sample of size  N is 
formed by sampling with replacement subject records (rows) of the 
observed N × p data matrix. Any subject irrespective of his/her 
missingness pattern has the same probability 1/N to be selected 
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in each draw and may appear multiple times in each bootstrap 
data set. We form 2000 bootstrap data sets, and each gives rise to 
the same analysis Steps 1–5 as were applied to the observed data 
(including re-fitting models for computing weights) resulting in 

point estimates θ =
( )� , 1, ..., 2000AIPW b
b

, which is the bootstrap distri-
bution of our AIPW estimate. A valid estimate of standard error 
can be obtained as the standard deviation of the bootstrap distri-
bution. We further construct a 95% confidence interval by using 
the percentile method; that is, by taking as confidence limits the 
2.5% and 97.5% percentile points of the bootstrap distribution. 
Other more sophisticated methods for bootstrap intervals can be 
used (e.g., BCa, bias-corrected and accelerated bootstrap intervals, 
available in SAS %BOOTCI macro and R package boot). Because the 
example data set is rather small, in some bootstrap samples mod-
eling probability of discontinuation using logistic regression may 
be challenging because of quasi-complete or even complete sepa-
ration making maximum likelihood estimation of parameters not 
possible. In many situations, this can be fixed by using a variant of 
penalized regression known as Firth’s (1993) penalized likelihood 
(available in SAS logistic regression  procedure). A small number of 
particularly unfortunate bootstrap samples (e.g., with no missing 
values) can be skipped.

17.5 Code Fragments

Here, we implemented a simple version of AIPW estimator similar in spirit 
to Vansteelandt et al. (2010). To obtain bootstrap-based standard errors, we 
used %BOOT and %BOOTCI macros available at http://support.sas.com/
kb/24/982.html. These macros require that the computation of estimates 

TABLE 17.1

Estimating Treatment Contrast and Least-Squares Means Using a Doubly Robust 
AIPW Method for Completers (Bootstrap-Based Confidence Intervals and 
Standard Errors)

Complete Data Incomplete Data (AIPWCC)

Treatment Time LSMEANS SE 95% CI LSMEANS SE 95% CI

1 3 −9.86 1.05 (−11.98, −7.75) −9.70 1.11 (−11.62, −7.17)
2 3 −13.26 1.05 (−15.37, −11.14) −12.58 1.26 (−15.19, −10.23)
Endpoint 
Treatment 
Difference

3.39 1.49 (0.39, 6.39) 2.88 1.71 (0.18, 6.82)
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subjected to bootstrapping was implemented by the user in a separate macro 
called %ANALYZE. To facilitate “by-processing” when computing bootstrap 
distribution of estimates, %BYSTMT macro is called within each procedure 
and data step inside %ANALYZE macro. The code may be not most efficient 
and specific to the data set at hand but easy to follow and (as we hope) gen-
eralize to other examples the reader may encounter.

CODE FRAGMENT 17.1 SAS Code for Implementing 
Augmenting Inverse Probability Weighting

 %macro analyze(data= , out= );
/* predicting prob of dropping at vis 2 */

ODS LISTING CLOSE;
PROC LOGISTIC DATA=&DATA DESC; 
%BYSTMT;
MO DEL R2 =TREAT BASVAL YOBS1 TREAT*YOBS1 TREAT*BASVAL/

FIRTH MAXITER=100 ;
OUTPUT OUT =PREDR2 P=PROB_V2;

RUN;

/* predicting prob of dropping at vis 3 */
PROC LOGISTIC DATA=PREDR2 DESC; 
%BYSTMT;
MO DEL R3 =TREAT BASVAL YOBS1 YOBS2 TREAT*YOBS1 

TREAT*YOBS2 TREAT*BASVAL/FIRTH MAXITER=100 ;
OUTPUT OUT =PREDR3 P=PROB_V3;

RUN;

/* computing weights at vis 2 and 3 */
DATA WEIGHTS_OBS ;
SET PREDR3;
%BYSTMT;
IF R2 =0 THEN DO;
WEIGHT2=1/(1-PROB_V2);

END;
IF R3 =0 THEN DO;
WEIGHT3=1/(1-PROB_V2)*1/(1-PROB_V3);

END;
RUN;

/* predict missing outcomes for vis 2 using IPW model*/
PROC GENMOD DATA=WEIGHTS_OBS ;
%BYSTMT;
MODEL YOBS2= TREAT BASVAL YOBS1 TREAT*BASVAL 
TREAT*YOBS1;
WEIGHT WEIGHT2;

OUTPUT OUT=PREDY2 PRED=PRED_Y2;
RUN;
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/* replace missing values for vis 2 with predicted */
DATA PREDY2;
SET PREDY2 ;

%BYSTMT;
IF YOBS2= . THEN YOBS2=PRED_Y2;

RUN;

/* predict outcomes for vis 3 using IPW model */
PROC GENMOD DATA=PREDY2;
%BYSTMT;
MO DEL YOBS3= TREAT BASVAL YOBS1 YOBS2 TREAT*BASVAL 

TREAT*YOBS1 TREAT*YOBS2;
WEIGHT WEIGHT3;
OUTPUT OUT=PREDY3 PRED=PRED_Y3;

RUN;

ODS OUTPUT LSMEANS=LSDR1
ESTIMATES=ESDR1;

PROC GENMOD DATA=PREDY3;
%BYSTMT;
CLASS TREAT;
MODEL PRED_Y3= BASVAL TREAT;
LSMEANS TREAT;
ESTIMATE "DR ESTIMATE OF TRT" TREAT -1 1;

RUN;

PRO C TRANSPOSE DATA=LSDR1 OUT= LSMEANS_TRANSP (DROP=_NAME_) 
PREFIX=LSMEANS;
%BYSTMT;
VAR ESTIMATE;
ID TREAT;

RUN;

DATA &OUT;
ME RGE ESDR1 (KEEP=MEANESTIMATE &BY RENAME=(MEANESTIMATE 

=TRTDIFF3))
LSMEANS_TRANSP;

%BYSTMT;
RUN;
ODS LISTING; 

%MEND;

/* construct analysis data with single record per subject */
PR OC TRANSPOSE DATA=DATALONG OUT= DATAWIDE (DROP=_NAME_) 

PREFIX=YOBS;
BY TRT SUBJECT BASVAL;
VAR CHGDROP;
ID TIME;

RUN;
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DATA FOR_ANALYSIS;
SET DATAWIDE;
R2=(YOBS2=.);
R3=(YOBS3=.);
TREAT=(TRT="2");

RUN;

/* applying analyze macro to observed data */
%LET BY=;
%ANALYZE(DATA=FOR_ANAL, OUT=OUT_EST);

%B OOT(DATA=FOR_ANAL, ALPHA=.05, SAMPLES=2000, 
RANDOM=123, STAT = TRTDIFF3 LSMEANS0 LSMEANS1, 
CHART=0, BIASCORR=1);

%BOOTCI(METHOD=PERCENTILE);

17.6 Summary

One motivation for DR methods is to improve the efficiency of wGEEs by 
augmenting the estimating equations with the predicted distribution of the 
unobserved data, given the observed data. This augmentation also intro-
duces the property of double robustness.

Efficient IPW estimators require three models: (1) a substantive (analysis) 
model that relates the outcome to explanatory variables and/or covariates 
of interest; (2) a model for the probability of observing the data (usually a 
logistic model of some form); and (3) a model for the joint distribution of the 
partially and fully observed data, which is compatible with the substantive 
model (1).

With augmented wGEEs if either model (2) or model (3) is wrong, but not 
both, the estimators in model (1) are still consistent. If model (1) is wrong, 
then estimates of all parameters will typically be inconsistent.

DR methods are fairly new and our understanding of how to best apply 
these methods in clinical trial scenarios is emerging.
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18
MNAR Methods

18.1 Introduction

Analyses in the MNAR framework try in some manner to model or other-
wise take into account the missingness process and its impact on outcomes 
of interest. However, moving beyond MAR to MNAR poses fundamental 
problems. In MAR, it is assumed that the statistical behavior of the unob-
served data is the same as it had been observed, such that the unobserved 
data can be predicted from the observed data. Of course, the characteris-
tics and statistical behavior of the missing data are unknown (Mallinckrodt 
2013). Therefore, it is impossible to know if MAR is valid and it is impossible 
to know if any specific MNAR model is correct. 

Moving beyond MAR to MNAR can only be done by making assumptions. 
Conclusions from MNAR analyses are therefore conditional on the appropri-
ateness of the assumed model (Verbeke and Molenberghs 2000). While depen-
dence on assumptions is not unique to MNAR analyses, an important feature 
of MNAR analyses (as with MAR analyses) is that (some of) the assump-
tions are not testable (Molenberghs et al. 1997) because the data about which 
the assumptions are made are missing (Laird 1994). Hence, no individual 
MNAR analysis can be considered definitive and multiple MNAR models 
can yield the same fit but imply very different dropout processes (Verbeke 
and Molenberghs 2000; Molenberghs and Kenward 2007). Therefore, MNAR 
methods are evolving to be used as sensitivity analyses more so than as pri-
mary analyses (Mallinckrodt 2013; Molenberghs et al. 2015). 

18.2 Technical Details

18.2.1 Notation and Nomenclature

General classes of MNAR methods arose from different factorizations of the 
likelihood functions for the joint distribution of the outcome variable and 
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the indicator variable for whether or not a data point was observed, which 
are often described as the measurement process and the missingness pro-
cess, respectively (Verbeke and Molenberghs 2000). In this context, outcome 
variable indicates the hypothetical “complete” data, which are split into two 
parts: the actually observed part and the missing part. The “full data” consist 
of the complete data and missingness indicators. The following terminology 
is used to describe and compare the methods. 

Subject i = 1,..., N is to be measured at times j = 1,..., n 
Yij is the random variable measured on Subject i at time j, where j can take 

on the values 1,..., n
Rij is an indicator random variable taking on the value of 1 if Yij is observed, 

0 otherwise.
Group Yij into a vector Yi = (Yi,obs, Yi,mis) 

Yi,obs contains Yij for which Rij = 1,
Yi,mis contains Yij for which Rij = 0.

Group Rij into a vector Ri that is commensurate with Yij such that all 1s are 
paired with the Yi,obs and the 0s are paired with the Yi,mis 

Di is the time of dropout
Ψ = Parameters describing the missingness process
θ = Parameters describing the measurement process 

18.2.2 Selection Models

A standard reference for selection models is Diggle and Kenward (1994). For 
a more recent reference, see Molemberghs et al. (2015, chapter 4). 

In selection models, the joint distribution of the ith subject’s outcomes (Yi) 
and the missingness indicators (Ri) is factored as the marginal distribution 
of Yi and the conditional distribution of Ri given Yi. 

 f(yi , ri|θ, Ψ) = f(yi|θ)f(ri|yi,obs, yi,mis, Ψ)

A selection model can be thought of as a multivariate model, where one 
variable is the continuous efficacy outcome from the primary analysis and 
the second variable is the binary outcome for dropout modeled via logistic 
regression (Mallinckrodt 2013). In ignorable models, it is assumed that the 
missingness process is independent of the measurement process (conditional 
on the measurements). An MNAR selection model explicitly ties together the 
measurement and missingness processes as the outcome variable (Y) from 
the measurement model is a predictor variable in the dropout (missingness) 
model (Mallinckrodt 2013).

Parametric selection models can be fit to observed data, even though there 
is no empirical information about the association between the values of R 
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(0 or 1) and Yi. By definition, Yi is missing in all instances when Ri = 0. The 
parametric and structural assumptions imposed on the full data distribution 
allow the model to be fit. However, the appropriateness of the model and its 
assumptions cannot be verified from the data (Verbeke and Molenberghs 
2000). Interestingly, Molenberghs et al. (2015) demonstrated that multiple 
selection models can be fit to the same data, yielding the same fit to the data, 
but implying different dropout processes, which in turn alter parameters 
describing the observed data. In other words, there is no definitive selection 
model that can be fit to a data set.

An example of a selection model used in a sensitivity analysis context is 
provided in Chapter 21.

18.2.3 Shared-Parameter Models

Standard references for shared-parameter models include Wu and Carroll 
(1988) and Wu and Bailey (1989). In a shared-parameter model, a set of latent 
variables, latent classes, and/or random effects is assumed to drive both 
the Yi (measurement) and Di (missingness, in this case time to dropout) 
processes. An important version of this model further asserts that, condi-
tional on the latent variables, Yi and Di are independent. A shared-param-
eter model can be thought of as a multivariate model, where one variable 
is the continuous efficacy outcome from the primary analysis and the sec-
ond is (typically) a proportional hazards time to event analysis for dropout 
(Mallinckrodt 2013). 

Specifically, the full data likelihood can be factored similarly to a selec-
tion model as the product of the marginal outcome distribution f(yi|bi) 
and the conditional distribution of Di given Yi and bi (for simplicity, the 
dependence on fixed parameters associated with these distributions is 
suppressed).

 f(yi,di,bi) = f(yi|bi)f(di|yi,bi)f(bi)

 = f(yi|bi)f(di|bi)f(bi)

Note that dependence of dropout on Yi in the last equation can be dropped 
because of the assumption that the outcome and dropout processes are con-
ditionally independent given the shared random effects, b. 

Therefore, the dropout and measurement models are linked by having the 
same random effects in both the outcome and dropout models. As in selec-
tion models, there are again untestable assumptions, namely that conditional 
on the latent (i.e., unobserved) random effects, Yi and Di are independent. 
This assumption is untestable because Yi is missing in each instance when Di 
is prior to the end of the trial.



220 Analyzing Longitudinal Clinical Trial Data

18.2.4 Pattern-Mixture Models

Standard references for pattern mixture models (PMMs) include Little (1993, 
1994, 1995). PMMs as originally proposed were based on the reverse fac-
torization of the full data likelihood as compared with the selection model 
factorization. In PMMs, the full data likelihood is the product of the mea-
surement process conditional on the dropout pattern and the marginal den-
sity of the missingness process.

 f(yi, ri|θ, Ψ) = f(yi|ri, θ)f(ri|Ψ)

As originally proposed, PMMs fit a response model for each pattern such 
that the observed data are a mixture of patterns weighted by their respective 
probabilities. Results are pooled over the various patterns for final inference. 
These models can be viewed from an imputation perspective in which miss-
ing values Ymis are imputed from their predictive distribution.

PMMs in this imputation context are by construction under-identified, 
that is, over-specified. For example, in the small example data set with drop-
out, say the goal is to estimate the difference between treatments at Time = 3. 
Although more dropout patterns are possible, only the three monotonic drop-
out patterns were actually present; that is, there were no intermittent missing 
data. Hence, the three patterns were last observations at Time 3 (completer), 
last observation at Time 2, and last observation at Time 1. Missing values for 
Time 3 can be imputed separately for each of the two noncompleter drop-
out patterns. However, information must be borrowed because there is no 
information about Time 3 within the noncompleter groups. This problem 
can be resolved through the use of identifying restrictions wherein inesti-
mable parameters of the incomplete patterns are set equal to (functions of) 
the parameters describing the distribution of other patterns (Molenberghs 
and Kenward 2007). 

Three specific and common identifying restrictions all use data from sub-
jects that remained in the study at time t to identify the distribution for those 
subjects that discontinued (NRC 2010). These restrictions are:

• CCMV: Complete Case Missing Values, where information is bor-
rowed from the completers group.

• NCMV: Neighboring Case Missing Values, where information is 
borrowed from the nearest dropout pattern.

• ACMV: Available Case Missing Values, where information is bor-
rowed from all patterns in which the information is available. 

ACMV is important because it corresponds to MAR, thereby providing a 
benchmark from which deviations can be judged (Mallinckrodt 2013). 

Although not commonly seen thus far in the literature, it is also possible 
to define patterns by reason for dropout rather than time of dropout; or, as 
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described in the next section, patterns can be defined by treatment group 
using the so-called controlled imputation approaches (Carpenter et al. 2013; 
O’Kelly and Ratitch 2014).

18.2.5 Controlled Imputation Approaches

Recently, another family of methods referred to as controlled imputation has 
been discussed in the literature and used in practice (Mallinckrodt 2013). 
Little and Yao (1996), Carpenter and Kenward (2007), Ratitch and O’Kelly 
(2011), Carpenter et al. (2013), Ayela et al. (2014) and Lipkovich et al. (2016) 
proposed imputation approaches that can be thought of as specific versions 
of PMMs. The common idea in each of these approaches is to construct a 
principled set of imputations that are controlled in a manner that creates a 
specific departure from MAR.

Controlled imputation approaches benefit from having assumptions—
such as specific departures from MAR—that are transparent and there-
fore easy to understand and debate. This is an important feature given that 
accounting for departures from MAR must be purely assumption driven. 
Therefore, controlled imputation approaches are especially useful for sen-
sitivity analyses and are therefore explained in some detail, with example 
analyses in the following Section 18.4. 

Two general families of controlled imputation can be considered. In 
the delta-adjustment approach, it is assumed that subjects who discontin-
ued had outcomes that were worse than otherwise similar subjects that 
remained in the study. The difference (adjustment) in outcomes between 
dropouts and those who remain can be a shift in mean or slope, an abso-
lute value, or a proportion. The adjustment is referred to as delta (Δ). The 
delta-adjustment can be implemented in manners resulting in increasing, 
decreasing, or constant departures from MAR. Recent references for delta-
adjustment methods include O’Kelly and Ratitch (2014) and Molenberghs 
et al. (2015, chapter 19).

The second general approach to controlled imputation is the so-called 
reference-based imputations. In this family of approaches, after dropout (or 
discontinuation of randomized study drug, or initiation of rescue medica-
tion), values are imputed by making qualitative reference to another arm 
in the trial (Molenberghs et al. 2015, chapter 19). In other words, deviations 
from MAR are created by assuming that after deviating from the initially 
randomized treatment (either via dropout, discontinuation of study drug, 
and/or initiation of rescue medication), imputed values take on the charac-
teristics of a reference group.

The intent for sensitivity analyses is to generate a conservative estimate 
of an MAR-based estimand. This approach can be especially useful when 
the reference arm can be seen as a worst plausible case departure from 
MAR for the treatment group (Mallinckrodt et al. 2014). In some instances, 
 reference-based imputation has been proposed as the primary approach to 
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estimating effectiveness that reflects change in or discontinuation of treat-
ment (Mallinckrodt et al. 2014).

Reference-based imputations can be implemented in a manner such that 
the transition to the reference arm is immediate or gradual, or the deviation 
from reference at the time of discontinuation can be maintained. A common 
approach is for missing values of drug-treated subjects to be imputed such that 
the post-deviation imputed values take on the statistical behavior of placebo-
treated subjects. That is, the benefit of the drug is assumed to immediately dis-
appear if study drug is discontinued (and/or rescue medication is initiated).

18.3 Considerations

Review papers that describe in detail, compare, and critique selection mod-
els, and shared parameter models and PMMs by identifying restrictions 
include Little (1995), Hogan and Laird (1997), Little and Rubin (2002), Diggle 
et al. (2002), Fitzmaurice et al. (2004), and Molenberghs and Kenward (2007). 
The NRC guidance on prevention and treatment of missing data summa-
rizes the advantages and disadvantages of selection models and PMMS as 
follows (NRC 2010).

The basic idea behind selection models is intuitive: specify a relation-
ship between the probability of discontinuation and the outcome of inter-
est, including the unobserved outcomes. However, operationalizing that 
idea can be problematic. The predictive distribution of missing responses 
is typically intractable, making it difficult to understand exactly how the 
missing observations are being treated for a given selection model. This is 
especially the case given that the outcomes and probability of discontinua-
tion are linked on the logit scale. Moreover, selection models are sensitive to 
parametric assumptions about the full data distribution. This concern can 
be alleviated to some degree via semi-parametric selection models. Many of 
these same comments can be applied to shared-parameter models.

Like selection models, PMMs start from an intuitive premise: conditional 
on the observed data, subjects with complete data have different outcome 
distributions than subjects with incomplete data. PMMs with identifying 
restrictions are transparent with respect to how missing observations are 
being imputed because the within-pattern models specify the predictive dis-
tributions directly. 

However, PMMs can be computationally difficult. Ironically, this issue is 
especially problematic when, as would be hoped, the rates of missing data 
are low such that the parameters associated with sparse patterns cannot be 
estimated reliably. In addition, although the identifying restrictions are trans-
parent, it is not necessarily easy for nonstatisticians to understand exactly 
what they imply about the missing values.
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One of the NRC expert panel’s recommendations (NRC 2010) was that 
methods for handling missing data be explained in protocols in a manner 
easily understood by clinicians. Others have questioned if, and if so, how 
this can be done. For example, Permutt (2015b) stated:

No doubt there are clinicians who understand the assumptions of inverse 
probability weighting, pattern mixture models, and multiple imputation 
along with clinicians who do not. However, much of the language in the 
NRC report is inaccessible to many of the clinicians who serve as study 
investigators or who evaluate new drug applications. Furthermore, a gen-
eral understanding of the methods does not suffice: what is required is to 
understand, so as to evaluate their plausibility, the specific assumptions 
being made by a specific model with specific covariates in a specific setting.

For example, consider trying to explain to clinicians how the various 
MNAR methods work. It is known that all methods rely on untestable 
assumptions. But explaining exactly what those assumptions are in a selec-
tion model, shared-parameter model, or even a PMM with traditional iden-
tifying restrictions (e.g., ACMV, CCMV, NCMV) is not straight-forward. 
Simply put, it is hard to understand exactly how these methods treat missing 
data, especially for nonstatisticians.

Therefore, for sensitivity analyses of confirmatory trials in a regulatory 
setting, selection models, shared-parameter models, and PMMs with tradi-
tional identifying restrictions may have limited utility. 

Transparency and ease of understanding are far easier with delta-adjustment 
and reference-based imputations. For example, in a reference-based imputa-
tion, it is easier to understand the implications of assuming that drug-treated 
patients after early discontinuation of study medication have outcomes similar 
to placebo-treated patients; or, for delta-adjustment, that drug-treated patients 
after early discontinuation have outcomes worse than otherwise similar drug-
treated patients who did not dropout by an amount equal to delta.

These advantages over earlier MNAR methods are leading to a wider use 
of controlled imputations, especially in regulatory settings (Permutt 2015b). 
Therefore, means to implement controlled imputations are covered in the 
next section.

18.4 Examples—Implementing Controlled Imputation Methods

18.4.1 Delta-Adjustment

Typically, only the experimental arm is delta-adjusted while the control 
arm is handled using an MAR-based approach. However, it is easy to delta-
adjust each arm, using the same or different deltas. Whether or not to apply 
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different dropout models by treatment arm is an important consideration for 
all MNAR approaches, not just delta-adjustment. 

The magnitude of the deviation from MAR in an MNAR model is gen-
erally proportional to the amount of missing data. Therefore, unless drop-
out rates vary widely between treatments, fitting the same MNAR model 
to all treatment groups will typically have a relatively small effect on treat-
ment contrasts. However, different MNAR models for each treatment arm 
provides greater opportunity for changes to estimated treatment contrasts 
compared with the corresponding MAR result. Delta-adjustment has thus 
far typically been implemented by applying delta to only the drug-treated 
arm(s) of the trial, leaving the control arm unadjusted. 

Two general families of delta-adjustment can be applied: marginal and 
conditional. In the marginal approach, the delta-adjustment is applied after 
imputation of all missing values and the adjustment at one visit does not 
influence imputed values at other visits. Therefore, the marginal approach 
with a constant delta will result in a constant departure from MAR over time.

In the conditional approach, the delta-adjustment is applied in a sequen-
tial, visit-by-visit manner. In this approach, missing values are imputed 
as a function of both actually observed and previously imputed delta-
adjusted values. In the conditional approach with delta applied to each 
visit, the deltas accumulate over time, resulting in a departure from MAR 
that increases over time. Alternatively, delta applied to only the first miss-
ing visit results in a departure from MAR that decreases over time (O’Kelly 
and Ratitch 2014). 

A single delta-adjustment analysis allows testing if a specific depar-
ture from MAR overturns the MAR result. However, the delta-adjustment 
method can also be applied repeatedly as a progressive stress test to find how 
extreme the delta must be to overturn the MAR result. This is the  so-called 
tipping point approach (O’Kelly and Ratitch 2014). 

To illustrate the delta-adjustment approach, consider the small exam-
ple data set with dropout. The SAS code fragment to implement the 
delta-adjustment controlled imputation approach is listed in Section 18.5 
(Code Fragment 18.1). The SAS implementation of delta-adjustment uses the 
conditional approach where delta-adjustment at previous imputations influ-
ences the current imputation. 

The top panel of Table 18.1 summarizes results from applying a delta- 
adjustment of 3 points to the drug-treated arm only using several approaches. 
First, adjustment was applied to only the endpoint visit (Time 3). That is, 
delta = 0 at Time 2. Even though the SAS implementation uses the con-
ditional method, this implementation yields the same result as a marginal 
approach. That is, using delta = 0 at Time 2 is equivalent to a Time 2 delta 
that does not influence Time 3 imputed values. The bottom panel of Table 
18.1 summarizes results from assuming progressively larger values of delta 
applied to only the endpoint visit, which again is equivalent to a marginal 
approach. 
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In both panels of Table 18.1, results from using delta = 0, that is no adjust-
ment, is the MAR result to which delta-adjustment results are compared. 
In  addition, interpretation of results is further facilitated by noting the 
(monotone) missing data patterns of the treatment arm to which the various 
deltas were applied. In the drug-treated arm (trt 2), three subjects had miss-
ing values at Time 2; those same three subjects plus three additional subjects 
had missing values at Time 3.

The top panel illustrates that applying the same delta to the endpoint visit 
has greater impact on the endpoint contrast than applying that delta to miss-
ing values at Time 2 only. This stems from two reasons. First, fewer patients 
have missing data at Time 2 than at Time 3. Hence, delta-adjustment is 
applied to fewer patients. In addition, applying delta to Time 2 imputed val-
ues impacts the endpoint contrast only indirectly via the correlation implied 
by the imputation model between Time 2 outcomes and Time 3 outcomes. 
This is another example of “shrinkage estimation” that was explained in 
Section 5.4. 

Applying delta to Time 2 and Time 3 had a greater impact on the end-
point contrast than applying delta to Time 3 only. This is because the total 
effect of the delta-adjustment on the endpoint contrast—in the conditional 
approach—is essentially the sum of the effect from directly adjusting 
imputed values for Time 3 and the indirect effect on Time 3 imputed values 
by having adjusted the Time 2 imputed values that are used as part of the 
Time 3 imputations. 

TABLE 18.1

Results from Various Delta-Adjustment Approaches to the 
Small Example Data Set with Dropout

Delta
Endpoint 
Contrast

Standard 
Error P

Deviation 
from MAR

Delta = 3
No adjustmenta 2.98 1.71 0.082 0.00
Time 2 only 2.70 1.73 0.119 0.28
Time 3 only 2.25 1.76 0.201 0.73
Time 2 and Time 3 1.97 1.79 0.271 1.01

Delta Applied to Endpoint

Visit Only
No adjustmenta 2.98 1.71 0.082 0.00
Delta = 1 2.74 1.73 0.103 0.24
Delta = 2 2.49 1.74 0.152 0.49
Delta = 3 2.25 1.76 0.201 0.73
Delta = 4 2.01 1.79 0.260 0.97
Delta = 5 1.77 1.82 0.323 1.21

a Delta = 0, the MAR result. Results do not exactly match previous 
 multiple imputation results due to different seed values.
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The bottom panel of Table 18.1 illustrates that increasing the delta applied 
to the endpoint visit has a consistent and therefore predictable effect for a 
given missing data pattern. In this example, for each 1-point increment of 
delta, the endpoint contrast was reduced by 0.24 points. This result is intui-
tive in that 24% of the values were missing for Treatment 2 at Time 3. In this 
simple illustration of applying what is essentially a marginal delta, the effect 
of delta-adjustment on the endpoint contrast can be analytically determined 
as follows: Let π = the percentage of missing values at the endpoint visit, and 
Δ = the delta-adjustment applied to the endpoint visit only. The change to the 
endpoint contrast = Δ × π.

From this simple, marginal approach to delta-adjustment it is easy to 
appreciate several important factors. First, it shows directly the impact of the 
fraction of missing values on the sensitivity of the MAR result to departures 
from MAR. If π is cut in half, Δ must double in order for the adjustment 
to have the same net effect on the endpoint contrast. It is also easy to see 
how progressively increasing delta can be used as a stress test to ascertain 
how severe departures from MAR must be in order to overturn inferences 
from the MAR result. However, the progressive stress test is not needed here 
because in this small example data set, results with dropout were not signifi-
cant in the MAR result. 

18.4.2 Reference-Based Imputation

Reference-based imputations can be tailored to specific scenarios. One vari-
ant of reference-based imputation, termed jump to reference (J2R), is imple-
mentation such that imputed values for subjects who discontinue the active 
arm immediately take on the attributes of the reference arm (placebo). That 
is, the treatment benefit in subjects who discontinue the active arm disap-
pears immediately upon discontinuation. In a second approach, called 
copy reference (CR), the imputations result in a treatment effect that gradu-
ally diminishes after dropout in accordance with the correlation structure 
implied by the imputation model. In a third approach, called copy incre-
ment from reference (CIR), the treatment effect after discontinuation is main-
tained by matching changes after withdrawal to changes in the reference 
arm (Carpenter et al. 2013). With regard to assessing sensitivity, J2R results 
in the greatest departure from MAR. 

Reference-based imputations as described above can also be interpreted 
as estimates of certain effectiveness estimands in that they explicitly model 
change in or discontinuation of treatment. In the effectiveness context, the 
J2R approach would be useful for symptomatic treatments with short dura-
tion of action where the benefits of the drug rapidly disappear after discon-
tinuation. The CR approach would be useful for symptomatic treatments 
with long duration of action. The CIR approach would be appropriate for 
treatments thought to alter the underlying disease process (disease modifica-
tion) (Mallinckrodt 2013). 
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It is perhaps easiest to understand these approaches by graphically depict-
ing what they do in comparison to traditional multiple imputation based on 
MAR. These depictions are in Figures 18.1 through 18.4. Additional technical 
details can be found in Molenberghs et al. (2015, chapter 19). 

Conceptually, consider traditional MI based on MAR as involving a 
regression on residuals (illustrated in Figure 18.1). Each subject’s devia-
tion from their respective group mean, while that subject was observed 
(shown as brown vertical segments extending from the line designating 
the treated mean), is used to impute the missing residuals. The actual 
imputed value (shown as “X” placed at the end of the red vertical seg-
ments) is the sum of the imputed residual and the group mean. In MAR, 
the imputed value is based on the mean of the group to which the subject 
was originally randomized. In  J2R, the regression on residuals is again 
applied. However, imputed values are based on adding the imputed resid-
uals to the reference arm mean—not the arm to which the subject had 
been randomized. 

In CR (Figure 18.3), as in J2R (Figure 18.2), the regressed residuals are 
again added to the reference arm. However, in CR, the residual is deter-
mined by the deviation of observed values from the reference arm (shown 
as the upper blue line)—not the arm to which the subject was initially 
randomized, as is the case for MAR-based MI and J2R. This feature has 
the effect of giving credit to the drug arm for any benefit resulting from 
the drug while the subject adhered to treatment; that benefit declines 
over time in accordance with the correlations implied by the imputation 
model. 
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FIGURE 18.1
Illustration of multiple imputation based on MAR.
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In CIR (Figure 18.4), residuals are determined as in MAR-based MI and 
J2R. However, missing values are imputed based on adding the regressed 
residuals to a hypothetical mean (shown as the dotted green line on the 
graph) that maintains the same deviation between the reference mean and 
the randomized group that was seen at the time of discontinuation. 
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FIGURE 18.2
Illustration of jump to reference-based imputation.
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Commercially available software to implement reference-based imputa-
tions is limited. It is possible to implement the CR approach in SAS. However, 
other variants must be implemented using specialty software. The Drug 
Information Association’s (DIA) Scientific Working Group on missing data 
has SAS macros available at missingdata.org.uk, under the DIA working 
group tab, to implement a variety of reference-based imputation approaches, 
along with other specialty software tools. The code fragment to implement 
CR in SAS for the small example data set with dropout is listed in Section 
18.5 (Code Fragment 18.2), and results are summarized in Table 18.2. 

The deviation from MAR, based on difference in treatment contrast from 
the MAR analysis, when applying CR was 0.31 (2.98 versus 2.69). This devia-
tion is smaller than would usually be the case in actual scenarios because 
only two post-baseline visits had missing values and these outcomes were 
strongly correlated.
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FIGURE 18.4
Illustration of copy increment from reference-based imputation.

TABLE 18.2

Results from Copy Reference Analyses of the Small 
Example Data Set with Dropout

Method
Endpoint 
Contrast

Standard 
Error P

Deviation 
from MAR

MAR-based MI 2.98 1.71 0.082 0.00
Copy reference 2.69 1.64 0.103 0.31
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18.5 Code Fragments

CODE FRAGMENT 18.1 SAS Code for 
Delta-Adjustment Controlled Multiple Imputation

/* 3 point adjustment at last visit only. No missing values
 At first post-baseline visit */
PROC MI DATA=y1 SEED=1214 OUT=outmi round=1 NIMPUTE=1000;
 by trt;
 class trt; 
 monotone method=reg; 
 var basval y1 y2 y3; 
 mnar adjust(y2 /delta=0 adjustobs=(trt='2')); 
 mnar adjust(y3 /delta=3 adjustobs=(trt='2'));
run;

ods output diffs = diffs;
proc Mixed data=finalY; 
 class trt time subject; 
 mod el y= basval trt time trt*time basval*time/ddfm=kr 

outp=check; 
 repeated time / subject=subject type = un; 
 by _Imputation_; 
 lsmeans trt*time/diffs; 
 id subject time ;
run;

data diffs2; 
 set diffs; 
 if time = _time and _time = 3;
run;

proc mianalyze data=diffs2; 
 modeleffects estimate; 
 stderr stderr;
run; 

 CODE FRAGMENT 18.2 SAS Code for the Copy 
Reference Method of Reference-Based Imputation

PROC MI DATA=y1 SEED=1214 OUT=outmi round=1 NIMPUTE=1000; 
 class trt; 
 monotone method=reg; 
 var basval y1 y2 y3; 
 mnar model (y2 / modelobs=(trt='1')); 
 mnar model (y3 / modelobs=(trt='1'));
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run;

ods output diffs = diffs;
proc Mixed data=finalY; 
 class trt time subject; 
 mod el y= basval trt time trt*time basval*time/ddfm=kr 

outp=check; 
 repeated time / subject=subject type = un; 
 by _Imputation_; 
 lsmeans trt*time/diffs; 
 id subject time ;
run;

data diffs2; 
 set diffs; 
 if time = _time and _time = 3;
run;

proc mianalyze data=diffs2; 
 modeleffects estimate; 
 stderr stderr;
run; 

18.6 Summary

MNAR analyses model or otherwise take into account the missingness process 
and its impact on outcomes of interest. It is impossible to know if MAR is valid 
and it is impossible to know if any specific MNAR model is correct. Moving 
beyond MAR to MNAR can only be done by making (untestable) assumptions. 
Therefore, MNAR methods are evolving to be used as sensitivity analyses in 
support of an MAR-based primary analysis more so than as primary analyses.

In selection models, the joint distribution of the ith subject’s outcomes (Yi) 
and the missingness indicators (Ri) is factored as the marginal distribution 
of Yi and the conditional distribution of Ri given Yi. Selection models can 
be thought of as multivariate models, where one variable is the continuous 
efficacy outcome from the primary analysis and the second variable is the 
binary outcome for dropout modeled via logistic regression.

In a shared-parameter model, a set of latent variables, latent classes, 
and/or random effects is assumed to drive both the Yi (measurement) and 
Di (missingness) processes. Conditional on the latent variables, Yi and Di are 
assumed independent. A shared-parameter model can be thought of as a 
multivariate model, where one variable is the continuous efficacy outcome 
from the primary analysis and the second is (typically) a proportional haz-
ards time to event analysis for dropout.
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PMMs as originally proposed were based on the reverse factorization of 
the full data likelihood as for the selection model. Hence, the full data likeli-
hood is the product of the measurement process conditional on the dropout 
pattern and the marginal density of the missingness process. As originally 
proposed, PMMs fit a response model for each pattern such that the observed 
data are a mixture of patterns weighted by their respective probabilities. 
Results are pooled over the various patterns for final inference.

It is hard to understand exactly how these methods treat missing data, 
especially for nonstatisticians. Therefore, as sensitivity analyses, especially 
for confirmatory trials in a regulatory setting, their utility is perhaps limited.

Delta-adjustment and reference-based imputations are transparent and 
easy to understand. These advantages are leading to a wider use of con-
trolled imputations, especially as sensitivity analyses. 

In reference-based imputation, deviations from MAR are typically created 
by assuming that drug-treated subjects after early discontinuation or initia-
tion of rescue have outcomes similar to those in the reference group. In delta-
adjustment, deviations from MAR are created by assuming that drug-treated 
patients after early discontinuation have outcomes worse than otherwise simi-
lar drug-treated patients who did not dropout by an amount equal to delta. 



233

19
Methods for Incomplete Categorical Data

19.1 Introduction

19.1.1 Overview

In Chapter 10, it was noted that a number of issues in modeling categori-
cal data could be handled in a similar manner as for continuous data. 
These similarities included modeling trends over time and accounting for 
within- subject correlations. In addition, the principles regarding analy-
sis of incomplete data previously discussed for continuous outcomes also 
apply to categorical outcomes. For example, the missing data mechanisms 
(Chapter 12) apply to categorical data in essentially the same manner as for 
continuous data.

As such, the general methods of dealing with incomplete continuous 
outcomes can be considered for incomplete categorical outcomes. For the 
reasons detailed in Chapters 12 and 13, simple and ad hoc approaches to 
handling missing data are not appropriate for either continuous or categori-
cal outcomes. Methods in the MNAR framework have an important place 
in the overall analysis plan, but that importance is primarily as sensitivity 
analyses. Therefore, as with continuous outcomes, analyses for incomplete 
categorical data center on likelihood-based approaches, multiple imputation 
and weighted generalized estimating equations (wGEE).

19.1.2 Likelihood-Based Methods

In continuous data, the linear mixed model provides a unifying analytic 
framework because the resulting estimates of fixed effect parameters have 
both a marginal and hierarchical model interpretation (Molenberghs and 
Kenward 2007). In other words, regardless of whether the scientific ques-
tion is geared to marginal inference, where trial results are extended to the 
general patient population, or hierarchical inference, where trial results are 
conditional on the patients in the study, the same model can provide valid 
answers to both questions. However, this connection between the model 
families does not exist in nonnormal data. Therefore, analysis method must 
be tailored to the scientific question.
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Likelihood-based methods are appealing for analyses of  continuous 
data because of their flexible ignorability properties if missing data arise 
from an MAR mechanism (Chapter 14). However, Chapter 10 noted that 
the increased computational complexity inherent to categorical outcomes 
necessitate approximations. Although a full discussion of how these 
approximations influence results is beyond the present scope, the impor-
tant implication is that the plausibility of being able to ignore the missing 
data in  approximation-based likelihood-type analyses of categorical data is 
 compromised over that seen with continuous data.

Therefore, analyses of incomplete categorical data may rely more on 
 multiple imputation and wGEE than incomplete continuous data.

19.1.3 Multiple Imputation

As with continuous data, missing categorical data can be imputed by mul-
tiple imputation, followed by an analytic approach that would have been 
suitable had the data been complete (Schafer 2003). See Chapter 15 for details 
on and implementations of multiple imputation in continuous data.

Multiple imputation can be especially straightforward and useful for the 
analyses of dichotomized continuous variables. For example, assume, as was 
done in Chapter 10, that in the small example data set a change from baseline 
of 50% is used as the cut off to define clinically meaningful improvement. 
Each efficacy response on the original, continuous scale is categorized as 
clinically meaningful improvement: “yes”/“no.”

Imputations could proceed to fill in the missing binary outcome. However, 
given the loss of information from dichotomizing continuous outcomes, it 
may be preferable to impute the missing values on the continuous scale and 
then categorize all outcomes, both observed and imputed, as meeting the 
criteria for response “yes” or “no.”

19.1.4 Weighted Generalized Estimating Equations

Generalized estimating equations can circumvent the computational com-
plexity of likelihood-based analyses of categorical data, and is therefore a 
viable alternative whenever interest is restricted to the mean parameters 
(treatment difference, time evolutions, effect of baseline covariates, etc.). 
In GEE, the missing data mechanism must be MCAR in order to be ignorable. 
Hence, similar to continuous data, weighted generalized estimating equa-
tions have been proposed to extend ignorability to both MCAR and MAR 
(see Chapter 16 for details of analyses in continuous data). 

As detailed in Chapter 12, GEE is valid only under MCAR, and hence 
the interest in weighted GEE. With categorical data, as with continuous 
data, the idea is to weight each subject’s contribution in the GEEs by 
the  inverse probability that the subject does not drop out (i.e., remains 
on the assigned treatment) at a given time point (visit-wise weighting), or 
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by the inverse probably of having observed the dropout pattern (subject 
level weighting).

Hence in practice, the only major modification needed for wGEE of cat-
egorical data compared with continuous data is to specify a link function for 
the means to account for nonlinearity and an appropriate distribution for the 
residuals. For binary data, the logit link is a common choice.

19.2 Examples

19.2.1 Multiple Imputation

This subsection illustrates two common analyses for categorical outcomes. 
The first example is a derived binary outcome (clinical response), and the 
second is an ordinal variable (PGI-Improvement). Similar examples were 
presented in Chapter 10 for analyses of complete data.

The derived binary outcome is defined as at least 50% improvement from 
baseline in HAMD depression score at the last scheduled evaluation. The MI 
analysis first imputes the underlying continuous scale data as illustrated in 
Code Fragment 15.1. Following imputation, the binary outcome is derived 
by applying the responder criterion to the observed and imputed values in 
each of the imputed (completed) data sets. Then, the primary analysis model 
is applied.

This primary analysis model is a logistic regression for responder status 
at Time 3, with treatment and baseline severity fitted as covariates. Finally, 
Rubin’s combination rules are applied to produce a single estimate of treat-
ment effect (converted to the odds ratio scale), along with the associated 
p-value and 95% confidence interval. A similar imputation strategy was 
evaluated by simulations and performed reasonably well (Lipkovich et al. 
2005). The code to implement this analysis is presented in Code Fragment 
19.1 (Section 19.3). Results are summarized in Table 19.1 and compared with 
the results from the complete data set using the same logistic model.

The second example is MI for the ordinal variable PGI Improvement 
(PGIIMP). To make the exercise more interesting, additional missing values 
resulting in nonmonotone missingness were created, similar to what was 
done in Section 15.3 when illustrating the MCMC method for multivariate 
normal data. Here, nonmonotone methods for imputing categorical data 
without easily specified joint distributions are illustrated. The SAS code to 
implement an approach using the so-called fully conditional specification 
(FCS) is presented in Code Fragment 19.2 (Section 19.3).

Once the completed data sets have been created, ordinal logistic regres-
sion is used to estimate the log odds ratio for the treatment effect and the 
associated standard errors. These results are passed to PROC MIANALYZE 
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to conduct combined (pooled) inference. We also obtain MI inference for the 
probabilities of not exceeding each level of PGIIMP by treatment arm. 
The results are shown in Table 19.2.

19.2.2 Weighted Generalized Estimating Equation-Based Examples

Weighted generalized estimating equations can be applied to incomplete 
categorical data using the methods and principles outlined in Chapter 16 
for analyses of continuous incomplete data, along with an appropriate link 
function and error distribution as described in Chapter 10.

TABLE 19.1 

Treatment Contrasts and Least-Squares Means for Multiple Imputation of a 
Derived Binary Outcome Compared with Results from Complete Data Using a 
Logistic Model for Responder Status at Time 3a

Complete Data (Logistic 
Model for Responder 

Status)

Incomplete Data (MI) 
(Imputing Underlying 

Continuous Score)

Treatment LSMEANS CI (95%) LSMEANS CI (95%)

1 0.60 (0.38, 0.78) 0.49 (0.26, 0.71)
2 0.92 (0.72, 0.98) 0.86 (0.55, 0.97)
Endpoint Treatment Difference 7.83 (1.45, 42.3) 6.39 (1.01, 40.43)

(p = 0.0167) (p = 0.0487)

a LSMEANS are on probability scale, treatment difference = odds ratio.

TABLE 19.2 

Treatment Contrasts and Least-Squares Means Estimated by Multiple Imputation 
and from Complete Data: Ordinal Logistic Model for PGI Improvement at Time 3a

Treatment PGIIMP

Complete Data (Ordinal 
Logistic Model for 

PGIIMP Score)

Incomplete Data (MI) 
(Imputing PGIIMP Score 
Using FCS with Logistic 

Model)

LSMEANS CI (95%) LSMEANS CI (95%)

1 ≤ 1 0.10 (0.04, 0.25) 0.09 (0.025, 0.29)
1 ≤ 2 0.55 (0.36, 0.73) 0.56 (0.34, 0.77)
1 ≤ 3 0.74 (0.55, 0.87) 0.73 (0.49, 0.88)

2 ≤ 1 0.30 (0.16, 0.49) 0.34 (0.17, 0.56)
2 ≤ 2 0.82 (0.64, 0.92) 0.87 (0.66, 0.96)
2 ≤ 3 0.91 (0.78, 0.97) 0.93 (0.76, 0.98)
Endpoint Treatment 
Difference

3.64 (1.18, 11.27)
(p = 0.0249)

4.93 (1.17, 20.75)
(p = 0.0298)

a LSMEANS are probabilities PGIIMP <= level, treatment difference are = odds ratios.
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19.3 Code Fragments

CODE FRAGMENT 19.1 SAS Code for Multiple Imputation 
Analysis of Derived Binary Outcome (Responder Analysis)

/* perform multiple imputation of monotone data from normal 
distribution */

proc MI data = all2_transp2 out = all2_miout nimpute 
=1000 seed =123;
by trt;
monotone method=reg;
var basval Yobs1 Yobs2 Yobs3;
run;
/* compute responder status on imputed data set */
data all2_miout;
set all2_miout;
responder=(Yobs3/basval <= − 0.5);

run;

/* apply analysis model to imputed data */
proc sort data=all2_miout ; by _Imputation_; run;

ods output Lsmeans=Bin_ls_imp
Estimates =bin_est_imp;

proc genmod data=all2_miout desc;
by _Imputation_;
class trt ;
model responder=trt basval/error=bin link=logit;
estimate "trt effect at vis 3" trt -1 1;
lsmeans trt ; 
run;

/** combine estimates using Rubin's rules **/

ods output ParameterEstimates=es_logist_mi_final;
proc mianalyze data=bin_est_imp ;
modeleffects LBetaEstimate;
stderr StdErr;

run;
data es_logist_mi_final;
set es_logist_mi_final;
OR=exp(Estimate);
OR_upper=exp(UCLMean);
OR_lower=exp(LCLMean);

run;

proc sort data=Bin_ls_imp ; by trt; run;
ods output ParameterEstimates=ls_logist_mi_final;
proc mianalyze data=Bin_ls_imp ;
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by trt ;
modeleffects Estimate;
stderr StdErr;

run;

data ls_logist_mi_final;
set ls_logist_mi_final;
prob_est=1/(1+exp(−1*Estimate));
prob_upper=1/(1+exp(−1*UCLMean));
prob_lower=1/(1+exp(−1*LCLMean));

run;

CODE FRAGMENT 19.2 SAS Code for Multiple Imputation 
Analysis of PGI Improvement as Categorical Outcome 

Using Fully Conditional Specification Method

proc mi data=all3_transpA out = all4_miout_fcs nimpute =1000 
seed =123;
class trt PGIIMPGR1 PGIIMPGR2 PGIIMPGR3;
fcs logistic(PGIIMPGR2/details)
logistic(PGIIMPGR3/details);
var trt basval PGIIMPGR1 PGIIMPGR2 PGIIMPGR3; 
/* imputation order is specified by var statement*/
run;

ods output Estimates =es_logit_imp
Lsmeans=ls_logit_imp;

proc genmod data=all4_miout_fcs;
by _Imputation_;
class trt;
model PGIIMPGR3 =trt basval/error=mult link=clogit;
estimate "trt effect at vis 3" trt -1 1;
lsmeans trt; 

run;

/* combine estimates using Rubin's rules */
ods output ParameterEstimates=es_logist_mi_pooled;
proc mianalyze data=es_logit_imp;
modeleffects LBetaEstimate;
stderr StdErr;

run;

data es_logist_mi_pooled;
set es_logist_mi_pooled;
OR=exp(Estimate);
OR_upper=exp(UCLMean);
OR_lower=exp(LCLMean);
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run;
proc sort data=ls_logit_imp; by trt PGIIMPGR3; run;
ods output ParameterEstimates=ls_logist_mi_pooled;
proc mianalyze data=ls_logit_imp;
by trt PGIIMPGR3;
modeleffects Estimate;
stderr StdErr;

run;

data ls_logist_mi_pooled;
set ls_logist_mi_pooled;
prob_est=1/(1+exp(− 1*Estimate));
prob_upper=1/(1+exp(− 1*UCLMean));
prob_lower=1/(1+exp(− 1*LCLMean));

run;





Section IV

A Comprehensive Approach 
to Study Development 

and Analyses

The intent of Section IV is not to provide specific guidance on  analytic 
approaches for specific scenarios. Rather, the intent is to illustrate how the 
principles for analyses of longitudinal data discussed in earlier parts of this 
book can be generally applied. Two example data sets are used for illustra-
tion in Section IV. These data sets were described in Chapter 4 as large data 
sets, one with a high rate of dropout and one with a low rate of dropout. 
Although these data were somewhat contrived for convenience, they main-
tain most of the characteristics of the original data, and are therefore realistic 
and convenient examples.
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20
Developing Statistical Analysis Plans

20.1 Guiding Principles

Recalling the process chart for study development introduced in Chapter 2, 
development of analysis plans begins with considering the objectives of the 
trial, which are determined from the decisions to be made from the trial. 
Estimands are chosen to address the objectives. A design is chosen to focus 
on the primary objective, and to also address key secondary objectives to the 
degree feasible. With clarity on objectives, estimands and design, analyses 
and sensitivity analyses can be chosen. It is important to appreciate the ben-
efits from this being an iterative process, essentially then jointly considering 
all aspects of the process. Iteration can lead to objectives, estimands, and 
designs that are more relevant given the circumstances, and analyses that 
are aligned with the design, estimands, and objectives.

To illustrate, reconsider the example introduced in Section 2.6: a short-
term, acute phase clinical trial is conducted where it is anticipated that 
the extensive efforts to maximize adherence will result in 95% of patients 
remaining on the initially assigned study medication. With this level of 
adherence, plausible departures from MAR are unlikely to overturn posi-
tive findings for a de jure estimand. Given this strong compliance and the 
highly-controlled study conditions, a de jure primary estimand may be most 
relevant. However, in a long-term trial in the same setting but with a design 
more similar to clinical practice, the more pragmatic nature of the trial and 
the inevitable loss of adherence over time may result in a de facto primary 
estimand being most relevant. 

No single estimand is likely to meet the needs of all stakeholders. De jure 
and de facto estimands each have strengths and limitations, and more fully 
understanding a drug’s effects requires understanding results from both 
families of estimands. Therefore, analysis plans need to address multiple 
estimands. Therefore, it is especially important that the analysis plans make 
clear which analyses address which estimands. 

Choosing and specifying an analytic approach for a particular situation 
requires clarity on the data to be used, the method of estimation, and the 
model. A key aspect of choosing data is whether or not assessments after 
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discontinuation of the initially randomized intervention and/or initiation 
of rescue medication should be included in the analysis. This is of course 
contingent on the estimand. However, including versus not including post-
rescue data can have an important impact on results and therefore sample 
size implications must be considered. 

For example, consider a scenario where estimand 1 from Table 2.1 (de facto 
estimand for effects of treatment regimen, post-rescue data is included) is of 
scientific interest. However, the medical condition addressed by the inter-
vention is rare and patients are hard to enroll. Given that assessing prag-
matic effectiveness via estimand 1 may require considerably more patients 
and therefore delay results of the trial for years, another estimand may be 
chosen as primary with estimand 1 evaluated secondarily. 

Decisions regarding method of estimation are inherently tied to the model 
to be used. For continuous data, likelihood-based estimation in mixed-effect 
models provides a unifying framework for addressing marginal and ran-
dom effect inference. With continuous data, the flexible ignorability prop-
erty of likelihood-based estimation with regard to missing data is appealing. 
However, multiple imputation and weighted GEE analyses are very useful, 
especially for more inclusive modeling where additional covariates can be 
included to help account for missing data. Multiple imputation can also be 
useful when covariates are missing. 

It is important to appreciate, however, that multiple imputation is, as the 
name denotes, an imputation technique, not a method of estimation. Even if 
the imputation step is valid and implemented via a principled likelihood-
based model, the analysis model could be misspecified, resulting in invalid 
inference. The analyst must choose therefore also choose an appropriate 
method and model to analyze the data. 

For categorical data, the elegant properties of the linear mixed-effects 
models with normal errors no longer hold and different analyses are needed 
for marginal inference versus hierarchical (random effects) inference. Often, 
interest in clinical trials will be more so on marginal inference that applies to 
the entire population as opposed to random effects inference that is specific 
to the subjects in the trial.

Moreover, the lack of simple specifications for multivariate distributions 
with categorical data leads to additional analytic complexity, which neces-
sitates approximations for likelihood-based estimation. These approxima-
tions mean that missing data arising from an MAR mechanism are no longer 
ignorable and, as with GEE, the more restrictive requirement of MCAR is 
needed for ignorability. Therefore, for categorical data, multiple imputation 
and weighted GEE are particularly useful.

An overarching consideration regarding objectives is whether the study 
is considered exploratory (e.g., phase I or phase 2) or confirmatory (phase 3). 
The ICH E9 guidance (http://www.ich.org/fileadmin/Public_Web_Site/
ICH_Products/Guidelines/Efficacy/E9/Step4/E9_Guideline.pdf) outlines 
the need for and benefit from pre-specification of statistical  analyses. 
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These benefits include objectivity and avoidance of result-guided analytic 
choices that could bias inferences. Compared with confirmatory studies, 
analytic plans for exploratory studies can have greater flexibility, thereby 
relying more on methods and models developed from the data in the 
study. Confirmatory studies generally rely more on pre-specification of 
analyses. The basic idea is to exploit flexibility of exploratory studies to 
learn as much as possible, and then confirm those learnings in subsequent 
studies.

However, regardless of scenario, pre-specification of analyses to the degree 
appropriate is useful. The fundamental purpose of statistical analysis plans 
is to pre-specify analyses in order to provide the necessary scientific rigor 
and objectivity sought in the E9 guidance. Although pre-specification avoids 
bias from result-guided analyses, it also means that assumptions about the 
data must be made. It is therefore important to understand the character-
istics of the anticipated data. Previous experience, especially results from 
earlier phase studies of the same intervention, can be extremely valuable in 
anticipating future data. 

Consequently, exploratory phase analysis plans can be developed to help 
inform the decisions needed for pre-specification of analyses in confirma-
tory trials. To that end, there is a clear connection between exploratory and 
confirmatory analyses plans. Some of the same basic approaches to model 
building that are used in exploratory studies can be used to assess the appro-
priateness of pre-specified methods in confirmatory studies. Therefore, 
analysis plans will typically either employ several analytic approaches in 
order to test which one is best (exploratory studies), or use several analytic 
approaches to evaluate the validity of assumptions in the pre-specified pri-
mary analytic approach (confirmatory studies). 

20.2 Choosing the Primary Analysis

20.2.1 Observed Data Considerations

In considering primary analyses it can be useful to divide the decision into 
two parts: how to model the observed data, and how to account for the miss-
ing data. Regarding the observed data, the general principles outlined in 
Part II of this book can be used to help inform choice of primary endpoint 
(change, percent change, etc.) along with how to model means over time, 
how to model the covariance between repeated measurements, and how to 
account for covariates. 

Clinical trials typically have a pre-determined number of assessment 
times that are fixed within narrow intervals. The number of assessment 
times relative to the number of patients is typically small. These attributes 
suggest that unstructured modeling of mean trends over time (i.e., time is 
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a categorical covariate) and unstructured modeling of within-patient covari-
ance (the so-called full multivariate normal model) is possible. This is impor-
tant, especially in confirmatory studies, because an unstructured model for 
the means requires no assumption about the time trend and models with 
fewer assumptions are preferred. 

The number of parameters to describe the means over time from an 
unstructured model increases linearly with the number of assessment times. 
The number of parameters to be estimated for unstructured modeling of 
covariance increases by n(n + 1)/2, where n is the number of assessment 
times. Although convergence of the full multivariate normal model has been 
a consideration (Mallinckrodt et al. 2008), these models virtually always 
converge in practice. However, convergence should still be considered, espe-
cially if separate unstructured covariance matrices are fit by treatment or by 
some other demographic or prognostic factor.

Primary analyses in clinical trials typically have models with a few covari-
ates at most. Additional covariates (subgroups) are assessed in secondary 
analyses. When a covariate is fit, including the covariate-by-time interaction 
should also be considered. Fitting just the main covariate effect imposes 
the restriction that the covariate has the same effect at all assessment times. 
If a covariate has many levels, such as investigative site, fitting the site-by-
time interaction could require estimation of a large number of parameters, 
thereby inducing potential convergence issues. In exploratory studies that 
are often smaller and more limited in the number of parameters that can be 
estimated, analysis plans can specify methods for determining the model 
with the best fit.

Choice of the dependent variable, such as percent change versus actual 
change, and choice of the test statistic (endpoint contrast, main effect, etc.) 
are often driven by convention in confirmatory trials. However, analysts 
should always understand the alternatives and be willing to propose the 
most appropriate test and endpoint given the estimand and characteristics 
of the data. 

20.2.2 Considerations for Missing Data

As noted in Chapter 2, choice of estimand influences what data are included 
in an analysis and whether or not data are considered missing. This section 
concerns those situations where some of the data that was intended to be col-
lected to evaluate the particular estimand are indeed missing. 

Fundamental issues exist in selecting a model and assessing its fit to 
incomplete data that do not apply to complete data. It was previously noted 
in Chapter 12 and elsewhere that the assumption of MCAR is unlikely to 
hold in most clinical trial scenarios. The validity of MCAR can be assessed 
using logistic regression analysis of probability of dropout. If the outcome 
variable being analyzed is associated with the probability of dropout, there 
is evidence to reject MCAR for that outcome. Tests for MCAR can also be 
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based on comparing visit-wise means for patients that dropped out versus 
patients that continued. If means differ, there is evidence to reject MCAR 
(Mallinckrodt 2013). 

These tests are geared toward assessing the association of observed out-
comes with probability of dropout. Finding an association rejects MCAR. 
However, not finding an association isn’t proof MCAR is valid. For MCAR to 
hold there must also be no association between the unobserved values and 
the probability of dropout, which as for testing validity of MAR, cannot be 
assessed from the observed data. Therefore, it is possible to prove MCAR 
doesn’t hold, but it is not possible to prove MCAR is valid.

Given the implausibility of MCAR, analyses assuming MCAR are difficult 
to justify a priori and are therefore generally not appropriate choices for the 
primary analysis (Mallinckrodt et al. 2008; NRC 2010; Permutt 2015b). Ad 
hoc, single imputation methods, such as LOCF and BOCF, entail strong and 
restrictive assumptions that are unlikely to hold in practice. Therefore, these 
methods are also generally not suitable for the primary analysis in clinical 
trials (Molenberghs and Kenward 2007; Mallinckrodt et al. 2008; NRC 2010). 

The assumption of MAR can never be confirmed in a clinical trial. 
However, MNAR methods also entail assumptions that cannot be verified. 
Both approaches are making assumptions about the missing data, which 
again cannot be verified (Verbeke and Molenberghs 2000). However, the dif-
ficulties in model selection and the consequences of model misspecification 
are generally greater for MNAR methods (Verbeke and Molenberghs 2000). 
In addition, departures from assumed distributions can be more problematic 
in MNAR models (Verbeke and Molenberghs 2000). 

Therefore, assuming MAR in the primary analysis can be a reasonable 
starting point in many clinical trial scenarios. However, the possibility of 
MNAR can never be excluded. With an MAR primary analysis, sensitivity 
analyses are needed to understand how strongly inferences are influenced 
by departures from MAR (Verbeke and Molenberghs 2000; Molenberghs and 
Kenward 2007; Mallinckrodt et al. 2008; Siddiqui, Hong, and O’Neill 2009; 
Permutt 2015b). Sensitivity analyses are discussed in Section 20.4.

20.2.3 Choosing between MAR Approaches

When implemented in a similar fashion, likelihood-based, multiple 
imputation- based, and weighted GEE analyses tend to yield similar results, 
with the degree of similarity increasing with size of the data set, and in the 
case of MI, the number of imputations. 

Likelihood-based methods tend to be more efficient. Hence, in situations 
where restrictive models that include only the design factors of the experi-
ment are to be used, likelihood-based methods may be somewhat preferred. 
However, when more flexibility is desired in accounting for missingness, 
such as whenever inclusive modeling is used, MI and wGEE are generally 
preferred. When an appreciable number of covariate values are missing, 
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MI would be preferred over likelihood-based methods. When covariates to 
be included in the analysis are missing, wGEE and direct-likelihood exclude 
the entire record. However, multiple imputation can be used to impute the 
missing covariate values. A special case of the covariate considerations is 
for baseline severity. In this case baseline could be considered as part of the 
response vector for the likelihood analysis, as illustrated in Chapter 9. This 
avoids the need to discard the entire record, but entails further considerations.

20.3 Assessing Model Fit 

20.3.1 Means 

If an unstructured modeling of means over time is used, there are no assump-
tions to test. However, it may still be useful to evaluate more parsimonious 
models, especially in exploratory studies where the enhanced precision from 
a more parsimonious model could be especially beneficial. If a structured 
form of the mean trends is pre-specified, model fit should be compared with 
an unstructured model. Given that these models are nested (i.e., sub-models 
of each other), standard likelihood ratio tests can be used.

20.3.2 Covariances 

Standard practice has evolved to use unstructured covariance/correlation 
matrices for modeling the within-subject errors. This helps avoid misspecifi-
cation (Mallinckrodt et al. 2008). However, this approach does not guaran-
tee validity. Structures more general than unstructured are possible, such as 
separate unstructured matrices by group (treatment). 

Use of the sandwich estimator for standard errors in place of the model-
based approach provides valid inference when the correlation structure is 
misspecified (Verbeke and Molenberghs 2000). Therefore, use of the sand-
wich estimator as the default approach would protect against correlation 
misspecification. However, when the sandwich estimator is used in SAS 
PROC MIXED, only the between-within method for estimating denomina-
tor degrees of freedom is available, an approach that is known to be biased, 
especially in small samples (SAS 2013). Moreover, the sandwich estimator 
assumes MCAR, which is difficult to justify a priori (Mallinckrodt 2013).

Therefore, a correlation structure deemed to be appropriate based on prior 
experience can be pre-specified as the primary analysis. Often this will be an 
unstructured covariance matrix. Model fit statistics and treatment contrasts 
from more general (separate unstructured matrices by treatment or other 
group) and more parsimonious structures can be compared to the primary 
analysis. If the primary analysis yields the best fit then the primary analy-
sis can be considered appropriate. If the primary analysis does not provide 
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the best fit but treatment contrasts or other relevant inferences do not differ 
between the primary analysis and the structure that yielded better fit, then 
the inferences from the primary analysis are robust to choice of covariance 
structure. Examples of fitting alternate covariance structures for the small 
example data sets were provided in Chapters 7 and 8. An example of assess-
ing sensitivity to covariance assumptions is provided in Chapter 21. 

20.3.3 Residual Diagnostics

Important assumptions required for valid regression-type analyses of con-
tinuous outcomes include linearity, normality, and independence (Wonnacott 
and Winacott 1981). These assumptions are in regards to the residuals (dif-
ference between observed and predicted values) not on the actual observa-
tions. An illustration of residual diagnostics from the small example data set 
was provided in Chapter 11 and an example from real clinical trial data is 
provided in Chapter 21. It is good practice to include residual diagnostics for 
the primary analysis in the clinical study report. 

Diagnostics can reveal patterns in the residuals suggesting that the model 
is misspecified. Therefore, residual diagnostics can be an iterative process 
wherein residuals are rechecked after alterations to the model based on the 
first set of residual diagnostics. The focus of residual diagnostics is not as 
much on whether or not deviations from assumptions existed, but rather on 
how much departure from assumptions influenced results. For example, if 
the residuals were not normally distributed, but this lack of normality had 
a trivial impact on the primary treatment contrast, then the result would be 
useful, even if not entirely valid in the strictest sense, because inferences 
were not contingent on this assumption. 

20.3.4 Influence Diagnostics

Influence diagnostics (and residual diagnostics) can be thought of conceptu-
ally as warning lights. These methods can flag data points or clusters of data 
that are unusual. Understanding to what degree study results are changed 
by the unusual data is important in understanding the overall robustness of 
results. 

Although methods to test for the existence and impact of outlier (influen-
tial) observations have been around for decades, new methods have been 
developed for use in MNAR analyses. To this end, interest has grown in local 
influence approaches (Molenberghs et al. 2015, chapter 16). Local influence 
provides an objective approach to identifying and examining the impact of 
influential observations and clusters of observations on various aspects of 
the analysis, including the missing-data mechanisms and treatment effects 
(Mallinckrodt 2013). 

However, given the newness and complexity of such methods, and that the 
methods are geared to the MNAR setting, the simpler influence diagnostics 
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introduced in Chapter 11 are often appropriate. The basic idea is again not to 
simply identify whether or not influential observations or clusters (patients, 
investigative sites) were present, but rather to assess how the most influential 
observations affected the parameters of interest. It is good practice to include 
influence diagnostics for the primary analysis in the clinical study report. 

20.4 Assessing Sensitivity to Missing Data Assumptions

20.4.1 Introduction

Assumptions about the missingness mechanism cannot be verified from the 
observed data, and therefore sensitivity analyses are needed to assess how 
departures from the assumed conditions influence inferences. In a broad 
sense, sensitivity analyses can be defined as several statistical models con-
sidered simultaneously, or further scrutiny of statistical models using spe-
cialized tools, such as diagnostic measures (NRC 2010). 

One approach to assessing sensitivity is to fit a selected number of models, 
all of which are deemed plausible. A second approach is varying assump-
tions in a systematic manner within a particular analysis. This approach 
is often implemented by setting certain parameters, especially those that 
quantify the departure from MAR towards MNAR, at various levels within 
a plausible range. Unlike model parameters, sensitivity parameters by their 
very nature are not estimable from available data and represent the “untest-
able” portion of the model assumptions. The degree to which conclusions 
(inferences) are stable across such analyses provides an indication of the con-
fidence that inferences are not contingent on assumptions. 

The focus of sensitivity analyses, at least initially, should be more so 
on comparing the magnitude of the primary treatment contrast from 
the primary analysis with results from the sensitivity analysis (analyses). 
Initially, emphasis should not be placed too heavily on statistical signifi-
cance. For example, if MAR was entirely valid and the primary result from 
an MAR analysis yielded a P value just under the pre-chosen significance 
level, sensitivity analyses may yield nonsignificant results despite the fact 
that estimated  treatment contrasts would be similar to the primary result 
(Mallinckrodt 2013). 

In addition, the focus of sensitivity analyses should be on sensitivity to 
assumptions, not sensitivity to methods. Many methods (e.g., likelihood-
based mixed models, multiple imputation, EM algorithm, …) rely on the 
same assumption that data are MAR. Therefore, comparing results from 
these methods does not assess sensitivity to the assumption of MAR and 
could lead to a misleadingly optimistic view of the robustness of the conclu-
sions (Mallinckrodt 2013; Permutt 2015b). 
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20.4.2 Inference and Decision Making

In the previous section it was emphasized that the initial focus of sensitivity 
analyses is often based on estimation—how the magnitude of the treatment 
effect is influenced by departures from assumptions. However, ultimately 
the results of most trials are used to inform a “yes”/“no” decision as to 
whether the trial met its primary objective. In exploratory studies, this deci-
sion may be used to determine if development of the drug continues or is 
terminated. In confirmatory trials to be evaluated by regulatory agencies, 
the regulators must determine if the study provided confirmatory evidence 
of drug benefit. This need for a “yes/no” decision provides motivation for 
simple approaches to sensitivity analyses that focus on systematic changes 
to the primary analysis (Permutt 2015b). 

Conducting a series of analyses that rely on different assumptions is use-
ful for showing how much results are contingent on the assumptions, but 
this information is not all that useful in fostering the “yes”/“no” decisions 
made by regulators (Permutt 2015b). The problem is that if the results dif-
fer, it may be difficult to say why. Results could differ because the assump-
tions of one model are satisfied and the assumptions of the other are not. 
Alternatively, it could be that the assumptions of both models are satisfied 
and the difference is random. Finally, it could be that the assumptions of 
neither model are satisfied so that neither analysis is valid (Permutt 2015b). 

Therefore, systematically varying the assumptions of the primary (often 
MAR-based) analysis may be more useful in supporting yes/no decisions 
than comparing results from a series of different analyses. To this end, the 
controlled imputation approaches described in Chapter 18 are particularly 
well-suited. Reference-based controlled imputation can be used to formulate 
a plausible worst-case scenario. The delta-adjustment approach can be used 
similarly by specifying a specific delta as the worst plausible cause, or deltas 
can be progressively increased as a stress test (Ratitch and O’Kelly 2014). 
This stress-testing format has been termed a tipping point analysis because 
it identifies the point at which results tip from significant to nonsignificant. 

If a plausible worst-case scenario can be specified a priori, this can reduce 
the problem of sensitivity to a single analysis. If the results of the plausible 
worst case agree with the primary result, then inferences were not contin-
gent on the assumptions. In cases where a plausible worst case cannot be 
identified, the delta-adjustment tipping point approach can be employed. 
However, the tipping point approach does not necessarily avoid the need 
to understand plausibility of departures from MAR. Inference from the tip-
ping point approach is contingent upon whether or not the delta required to 
overturn the primary result is plausible or not. If the delta needed to over-
turn the primary result is not a plausible departure, then results are robust 
to plausible departures. 

In providing specific advice on sensitivity analyses for confirmatory stud-
ies in a regulatory environment, Permutt (2015b) advocated the tipping point 
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approach and noted that the decision problem then becomes a matter of 
judgment about the plausibility of values of delta. He suggested that pro-
tocols should address the question of what deviations might be considered 
plausible so that this may form the basis of discussion, and sometimes even 
of agreement, with regulatory agencies before results are known. 

Such discussions and agreements can also inform planning of trials, espe-
cially with respect to sample size (Permutt 2015b). The crucial question is 
whether the plausible range of deviations from MAR lies entirely within 
the range of statistical significance. It is important to appreciate the regula-
tor’s perspective. In practice, an effect may confidently be considered sig-
nificant only if it remains significant at the outer limit of a plausible range 
of deviations from MAR. The best estimates might be those based on MAR. 
However, binary decisions are needed in the regulatory setting. As a prac-
tical matter, regulators will need to act on the analyses at the unfavorable 
end of the plausible range, and applicants will need to anticipate and plan 
accordingly (Permutt 2015b).

For example, it might be best to power studies not on the anticipated mag-
nitude of the treatment effect, but on the treatment effect minus the worst 
plausible departure from MAR. This regulatory perspective reinforces the 
need for the iterative study development process described in Chapter 2. It 
especially reinforces the benefits from minimizing missing data.

See Chapter 21 for examples of applying sensitivity analyses and drawing 
inference.

20.5 Other Considerations

20.5.1 Convergence 

Failure of analytic algorithms to converge almost always results from 
improperly preparing the data (e.g., two observations on the same patient 
at the same time point) or from overspecified fixed effects models. Failure 
to converge almost never results from the pre-specified covariance matrix 
being too general. However, nonconvergence is possible with separate 
unstructured covariance matrices for groups, very high rates of dropout 
and/or need to estimate a large number of fixed effect parameters (such as 
when the time-by-site interaction is fit when there are many sites and fre-
quent assessments). 

If data are prepared correctly and the analysis fails to converge, conver-
gence can be enhanced by using software features such as inputting starting 
values for parameter estimates, or the use in the initial round(s) (but not 
final rounds) of iteration algorithms such as Fisher’s scoring rather than the 
Newton–Raphson algorithm, which is the default algorithm in many soft-
ware packages. 
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Rescaling and/or centering of the data (e.g., using orthogonal polynomi-
als to model time trends) are also options. If outcomes and covariates are 
made to fall in ranges in the order of magnitude of unity, interpretations 
and conclusions will not be changed; but, avoiding manipulation of large or 
small numbers from a numerical analysis perspective reduces the risk of ill-
conditioned matrices, and ultimately, overflow or underflow (Mallinckrodt 
et al. 2008).

If all else fails, the protocol can envision one of several model-fitting 
approaches for determining the covariance structure. A set of structures can 
be specified. The structure converging to the best fit as assessed by stan-
dard model-fitting criteria is considered the primary analysis. Alternatively, 
a series of structures can be pre-specified in a fixed sequence, and the first 
correlation structure to yield convergence is considered the primary analy-
sis. For example, unstructured could be specified as the structure for the 
primary analysis; but if it failed to converge, a series of ever more parsimo-
nious structures appropriate to the situation at hand could be fit until one 
converges, which would then be considered the primary analysis. 

Again, it is important to emphasize that in practical situations it is almost 
always possible to gain convergence from an unstructured covariance 
matrix. However, in instances when correctness of the covariance structure 
is a concern, standard errors and the associated inferences from maximum 
likelihood analyses can be based on the so-called sandwich estimator, which 
does not require correct specification of the correlation structure in order 
to yield valid inferences (Lu and Mehrotra 2009). However, as detailed in 
Section 20.3.2, the sandwich estimator requires MCAR. Therefore, specifica-
tion of model-based standard errors as the primary approach is often prefer-
able in likelihood-based analyses.

20.5.2 Computational Time

Mixed-effects models can be computationally intensive, and execution times 
can be long. Computational intensity stems from solving the mixed model 
equations and considerable CPU time is often required to compute the likeli-
hood function and its derivatives. These latter computations are performed 
for each round of Newton–Raphson iteration (SAS 2013). 

The following suggestions from the SAS on line documentation (SAS 2013) 
can be helpful when dealing with a model that has excessive compute time. 
Each of these factors could also be considered as means of aiding convergence: 

• Examine the number of columns in the X and Z matrices. A large 
number of columns in either matrix can greatly increase comput-
ing time. Eliminating higher-order effects can markedly reduce the 
computational burden. 

• In general, specify random effects with many levels in the REPEATED 
statement and those with a few levels in the RANDOM statement. 
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• Use the parms statement to specify plausible starting values for 
parameters.

• If the Z matrix has many columns (e.g., many subjects), consider 
using the between-within method to estimate denominator degrees 
of freedom in order to eliminate the time required for the contain-
ment method. 

• If possible, “factor out” a common effect from the effects in the 
RANDOM statement and make it the SUBJECT = effect. This creates 
a block-diagonal G matrix and can often speed calculations. 

• If possible, use the same or nested SUBJECT = effects in all RANDOM 
and REPEATED statements. 

• The LOGNOTE option in the PROC MIXED statement writes peri-
odic messages to the SAS log concerning the status of the calcula-
tions, which can help diagnose where the slowdown is occurring. 

20.6 Specifying Analyses—Example Wording 

20.6.1 Introduction

To fully specify an analysis, the method of estimation, the analytic model, 
and the choice of data must be made clear. Perhaps most importantly, it must 
also be clear what estimand the analysis is addressing.

A key principle of pre-specification is that analysts independently follow-
ing the specifications arrive at the same results. For method of estimation, the 
primary options covered in this book include likelihood-based (maximum or 
restricted), generalized estimated equations, or least squares. Choice of data 
must include any imputation of missing data (e.g., multiple imputation) and 
whether or not data after discontinuation of initially randomized medication 
and/or initiation of rescue medication are to be included in the analysis. 

All aspects of the analytic model should be pre-specified. Although there 
is no standard approach for model specification, a useful place to begin is 
in describing the dependent variable. Such specification should include the 
outcome variable and whether it is the actual values, change from baseline, 
percent change, etc., that is to be analyzed. In addition, any transformations 
or link functions that are utilized to account for nonnormality should be 
specified. 

Concise and clear specification of covariates (independent variables) in the 
model is also essential. Such specification includes the variables themselves, 
interactions between variables, whether or not each variable is considered a 
categorical or continuous effect, and whether or not each variable is consid-
ered a fixed or random effect. 



255Developing Statistical Analysis Plans

In addition, it is also necessary to specify what inferential tests will be the 
primary basis for evaluation (e.g., treatment main effect, endpoint contrast). 
In addition, it is also necessary to specify other details about the inferential 
test, such as the type of sums of squares (type I, type II, type III, etc.) and how 
denominator degrees of freedom are estimated. 

20.6.2 Example Language for Direct Likelihood

The following example text illustrates one way to specify a priori all the 
details of a likelihood-based analysis such that independent analysts will 
arrive at exactly the same results. This particular wording specifies the full 
multivariate approach for an analysis of mean change from baseline with 
an unstructured modeling of treatment effects over time and within-patient 
error correlations. 

Mean changes from baseline will be analyzed using a restricted maxi-
mum likelihood (REML)-based repeated measures approach. Analyses will 
include the fixed, categorical effects of treatment, investigative site, visit, and 
treatment-by-visit interaction, as well as the continuous, fixed  covariates 
of baseline score and baseline score-by-visit-interaction. An unstructured 
(co)variance structure will be used to model the within-subject errors. 
The Kenward–Roger approximation will be used to estimate denominator 
degrees of freedom and adjust standard errors. Significance tests will be 
based on least-squares means using a two-sided α  = 0.05 (two-sided 95% 
confidence intervals). Analyses will be implemented using (insert software 
package). The primary treatment comparisons will be the contrast between 
treatments at the endpoint Visit.

20.6.3 Example Language for Multiple Imputation

The following example text is for an MI-based approach, assuming MAR, 
with sequential imputation for monotone missing data and multivariate 
Gaussian model/partial MCMC imputation for nonmonotone missing data. 
This model uses MCMC for partial imputation of nonmonotone data under 
MAR followed by sequential MI regression for monotone data. If desired, 
MCMC can be used for all missing data, both monotone and nonmonotone. 
Alternatively, a two-step process can be followed where only nonmono-
tone data is imputed first with the MCMC method, followed by a second 
step using the sequential MI regression to impute the remaining monotone 
missing data. This may be desirable if, for example, the primary outcome or 
other post-baseline auxiliary outcomes are categorical and would be better 
modeled with a logistic regression imputation model. In that case, sequen-
tial MI for monotone data can use regular regression models for continuous 
variables and logistic regression models for categorical variables that need 
to be imputed. In the example text that follows, measure1 is the dependent 
 variable in the primary analysis.
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Mean changes from baseline in measure1 will be analyzed based on data 
observed while the subject remains on study as well as data imputed using 
multiple imputation (MI) methodology for time points at which no value 
is observed. Multiple imputation will be performed under the assumption 
of missing-at-random (MAR) and will be implemented in two steps using 
{software, version}. 

First, partial imputation will be carried out to impute intermittent (non-
monotone) missing data based on a multivariate joint Gaussian imputation 
model using the Markov chain Monte Carlo (MCMC) method. A separate 
imputation model will be used for each treatment arm. The imputation mod-
els will include {list of baseline covariates}, measure1 assessments at each time 
point {Baseline, Visit x,…,y}. The MCMC method will be used with multiple 
chains, 200 burn-in iterations, and a noninformative prior. In case of noncon-
vergence or nonestimability issues, a ridge prior and a single model will be 
considered with treatment arm added as an explanatory variable to the model.

The remaining monotone missing data will be imputed using sequential 
regression multiple imputation, where a separate regression model is estimated 
for imputation of each variable (i.e., measurement at each time point). Each 
regression model will include explanatory variables for {list of baseline covari-
ates}, treatment and all previous (Baseline, Visit x,…,y) values of measure1. No 
rounding or range restrictions will be applied to imputed continuous values.

Imputed data will consist of {MM} (e.g., 500) imputed data sets. The ran-
dom seed number for partial imputation with the MCMC method will be 
{XXXXX}, and the random seed number for the sequential regression mul-
tiple imputation will be {YYYYYY}. 

Each imputed data set will be analyzed using the following analysis method. 
Change in measure1 from baseline to each post-baseline visit will be based 
on observed and imputed data. {Insert description of analysis model/method, 
e.g., direct likelihood MMRM as described above, or ANCOVA.} Treatment 
group comparison at Visit T will be based on the least squares mean (LSM) 
difference between treatment groups in change from baseline in measure1 
estimated by the analysis model in each of the imputed data sets. Results from 
analysis of each imputed data set, that is, LSM treatment differences and their 
standard errors, will be combined using Rubin’s imputation rules to produce a 
pooled LSM estimate of treatment difference, its 95% confidence interval, and 
a pooled P-value for the test of null hypothesis of no treatment effect.

20.7 Power and Sample Size Considerations

Chapter 5 included a subsection illustrating how changes in variance com-
ponents of a mixed-effects model influence parameter estimates and their 
uncertainty. A key implication of those illustrations was that variance 
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components need to be considered when assessing power in planning lon-
gitudinal studies. Other key considerations in powering studies include the 
rate of missing data. It is intuitively easy to appreciate that the more missing 
data, the lower the power. Therefore, the impact to power and sample size 
from missing data should be considered in the protocol and some degree of 
protection against unexpectedly higher rates of dropout may be warranted. 

Although a wide array of commercial software for power and sample 
size determination exist, simulation studies are fairly easy to conduct and 
often more useful. With fairly simple coding and reasonable compute times, 
flexible programs can be tailored to the specific circumstances at hand. The 
impact of correlation structure and missing data can be easily evaluated by 
changing the relevant input parameters. The need to maintain robustness 
to plausible departures from MAR could be addressed by including, for 
 example, a delta-adjusted power/sample size. Results can be used to com-
pare power for treatment main effects, interaction effects, or visit-wise con-
trasts. The impact of fitting versus not fitting a covariate can be assessed. 

Clinical development in general relies increasingly on simulation studies 
to inform plans. Clinical trial simulation to inform power/sample size can be 
seen as simply one specific aspect of the general trend. 
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21
Example Analyses of Clinical Trial Data

21.1 Introduction

This chapter illustrates the analyses of longitudinal clinical trial data using 
the principles and recommendations outlined in previous chapters. The 
analyses conducted here are for illustration and should not be considered 
universal recommendations for similar situations. Data for these analy-
ses are the so-called high and low dropout (large) data sets described in 
Chapter 4. Recall, these data are somewhat contrived for convenience, but 
were extracted from two real clinical trials and thus provide a useful illus-
tration of analyses, model verification procedures, and sensitivity analyses. 
Parts of this example were previously reported in Molenberghs et al. (2015, 
chapter 22). 

For this example, the primary objective was to compare treatment versus 
control in mean change from baseline to Week 8 on the Hamilton 17-item 
depression rating scale (Hamilton 1960). The primary analysis targeted a de 
jure (efficacy) estimand—the effects of the initially randomized medication 
if taken as directed; that is, estimand 3 described in Table 2.1. Effectiveness 
was assessed secondarily as the effects of the drug as actually taken; that 
is, estimand 2 described in Table 2.1. Post-rescue data were not collected in 
these studies. Therefore, it was not possible to assess the de facto treatment 
regimen estimand (estimand 1 in Table 2.1). Had post-rescue data been avail-
able, estimand 1 could have been evaluated using the same methods as for 
estimand 3. Additional details on descriptive, primary, and sensitivity anal-
yses are provided below.

21.2 Descriptive Analyses

The number of observations by assessment time is summarized in Table 21.1.
Visit-wise mean changes for patients who completed the trials versus those 

who discontinued early were summarized by visit in Figures 4.1 and  4.2 
for the low and high dropout data sets, respectively. In the high dropout 
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data set, visit-wise mean changes for patients who discontinued early were 
less than for completers, suggesting that patients with poorer response were 
more likely to drop out; therefore, the missingness mechanism was unlikely 
MCAR. With only a few dropouts at each visit in the low dropout data set, 
trends were not readily identifiable.

21.3 Primary Analyses 

To assess the primary de jure estimand, mean changes from baseline were 
analyzed using a restricted maximum likelihood (REML)-based repeated 
measures approach. The analysis included the fixed, categorical effects 
of treatment, investigative site (site), visit, treatment-by-visit interaction, 
and site-by-visit interaction, along with the continuous, fixed covariates 
of baseline score and baseline score-by-visit-interaction. An unstructured 
(co)variance structure was used to model the within-patient errors. The 
Kenward–Roger approximation was used to estimate denominator degrees 
of freedom. Significance tests were based on least-squares means using a 
two-sided α  = 0.05 (two-sided 95% confidence intervals). Analyses were 
implemented using SAS PROC MIXED (SAS 2013). The primary comparison 
was the contrast between treatments at Week 8.

Results from the primary analyses are summarized in Table 21.2. In the 
high dropout data set, the advantage of drug over placebo in mean change 
from baseline to Week 8 was 2.29 (SE = 1.00, P = 0.024). The corresponding 
results in the low dropout data set were 1.82 (SE = 0.70, P = 0.010). The stan-
dard error for the difference in lsmeans at Week 8 in the high dropout data 
set was nearly 50% larger than in the low dropout data set. This was partly 
due to the lower variability in the low dropout data set (see Table 21.4). The 
larger variability in the high dropout data set accounted for a 32% increase 
in standard error on its own. The additional increase in standard error in the 
high dropout data set came from the additional quantity of missing data.

The secondary, de facto estimand was assessed based on treatment suc-
cess or failure. Treatment success was defined as improvement greater than 
or equal to 50% of the baseline severity and completion of the acute treat-
ment phase. Any patient that discontinued study medication was considered 

TABLE 21.1 

Number of Observations by Week in the High and Low Dropout Data Sets

High Dropout Low Dropout

Week 1 2 4 6 8 1 2 4 6 8
Placebo 100 92 85 73 60 100 98 98 95 92
Drug 100 91 85 75 70 100 98 95 93 92
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a treatment failure regardless of outcome. Treatment groups were compared 
using Fisher’s exact test. Results are summarized in Table 21.3.

Both trials yielded significant advantages of drug over control in percent 
treatment success. The definition of the treatment success included comple-
tion, so there was no missing data and no need to assess sensitivity to miss-
ing data assumptions, per se. However, generalizability results should be 
considered and it is still advisable to understand how changes in the rates of 
dropout influence outcomes. The low dropout data set had greater within-
group mean changes in addition to greater adherence. It is unclear if or how 
design differences may have influenced the within-group mean changes and 
adherence. However, the two trials give different views of effectiveness. The 
percent treatment success on placebo in the low dropout data set was two-
fold greater than in the high dropout data set.

TABLE 21.2 

Visit-Wise LSMEANS and Contrasts for HAMD17 from the Primary 
Analyses of the High and Low Dropout Data Sets 

LSMEANS 
LSMEAN 

Differencea
Standard 

Error PPlacebo Drug

High Dropout
Week 1 − 1.89 − 1.80 − 0.09 0.64 0.890
Week 2 − 3.55 − 4.07 0.52 0.81 0.518
Week 4 − 4.87 − 6.20 1.32 0.86 0.125
Week 6 − 5.51 − 7.73 2.22 0.93 0.019
Week 8 − 5.94 − 8.24 2.29 1.00 0.024

Low Dropout
Week 1 − 2.22 − 1.76 − 0.45 0.38 0.235
Week 2 − 4.93 − 4.89 − 0.04 0.56 0.943
Week 6 − 7.79 − 8.31 0.52 0.61 0.392
Week 4 − 9.45 − 10.69 1.25 0.66 0.060

Week 8 − 10.57 − 12.39 1.82 0.70 0.010

a Advantage of drug over placebo. Negative values indicate an advantage for placebo.

TABLE 21.3

Percent Treatment Success for the De Facto Secondary Estimand in the 
High and Low Dropout Data Sets

High Dropout Treatment 
Success (%)

Low Dropout Treatment 
Success (%)

Placebo Drug Difference P Placebo Drug Difference P

25 39 14 0.034 50 68 18 0.001
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21.4 Evaluating Testable Assumptions of the Primary Analysis

21.4.1 Sensitivity to Covariance Assumptions

Unstructured covariance matrices were used for the primary analyses. 
Correlations and (co)variances from the primary analyses of the high and 
low dropout data sets are summarized in Table 21.4.

Treatment contrasts from more general and more parsimonious covariance 
structures, with and without use of the sandwich estimator, are summarized 
in Table 21.5. In the high dropout data set, an unstructured matrix common to 
both treatment groups that was used as the primary analysis provided the best 
fit, thereby supporting results from the primary analysis as valid. However, 
the potential importance of choice of covariance structure with this high rate 
of dropout can be seen in the comparatively large range in treatment contrasts 
(1.69–2.29), standard errors and P-values across the covariance structures.

In the low dropout data set, the range in treatment contrasts across the 
covariance structures (1.76–1.85) was approximately six-fold smaller than 
in the high dropout data set, and all structures yielded a significant treat-
ment contrast. Separate unstructured matrices by treatment group yielded 
the best fit, with the second best fit being from a single unstructured matrix 
that was specified as the primary analysis. The consistency of results across 
covariance structures indicates conclusions were not sensitive to correlation 
structure, thereby supporting validity of the primary analysis.

21.4.2 Residual and Influence Diagnostics—High Dropout Data Set 

Given the comparatively small number of sites in these contrived data, influ-
ence of each site was investigated by removing sites one at a time and repeating 
the primary analysis on the data subsets. In scenarios with more sites, influence 
diagnostics as presented in Chapter 11 could be implemented to first identify 
influential sites and then repeat analyses deleting only the influential sites.

The influence option in the model statement of SAS PROC MIXED (SAS 
2013) was used to determine which patients had the greatest influence on 
various aspects of the model. Results based on restricted likelihood distance 
(RLD) are discussed below. The RLD is a measure of influence on the objec-
tive function; that is, a measure of overall influence not specific to any partic-
ular model parameter. In addition, residual diagnostics were used to further 
identify unusual patients or individual observations.

Residual plots from the high dropout data set are shown in Figure 21.1. 
The upper left panel shows no association between magnitude of residual 
and magnitude of prediction, and no clear increase in variance across pre-
dicted values. The upper right and lower left panels suggest residuals satis-
fied normality assumptions.

Box plots of residuals for each treatment-by-time combination in the high 
dropout data set are shown in Figure 21.2. These plots suggest aberrant residuals 
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were relatively rare compared to the total number of observations and that there 
was no systematic trend in the residuals, suggesting the model was appropriate.

RLDs for each patient in the high dropout data set are shown in Figure 21.3. 
The largest RLD values were approximately 2.0. Values of this magnitude gen-
erally suggest no individual patient had a large influence on the overall model.

Additional measures of influence (not presented here) include case dele-
tion metrics based on Cook’s D, as described in Chapter 11, to assess the 
influence of individual patients on each specific model parameter, including 
fixed effects and covariance parameters. No individual patient was found to 
have a large influence on any individual parameter.

21.4.3 Residual and Influence Diagnostics—Low Dropout Data Set 

Residual and influence diagnostics for the low dropout data set were con-
ducted as previously described for the high dropout data set. Residual plots 

TABLE 21.5

Treatment Contrasts from Alternative Covariance Matrices from the 
Primary Analyses

Structurea AIC
Endpoint 
Contrasts

Standard 
Error P

High Dropout
UN 4679.82 2.29 1.00 0.024
UN EMPIRICAL 4679.82 2.29 0.97 0.020
TOEPH 4684.44 2.10 0.91 0.023
TOEPH EMPIRICAL 4684.44 2.10 0.92 0.023
TOEPH GROUP = TRT 4689.88 1.82 0.91 0.048
UN GROUP = TRT 4692.05 1.96 1.00 0.053
CSH 4735.81 1.86 0.93 0.047
CSH EMPIRICAL 4735.81 1.86 0.91 0.041
CSH GROUP = TRT 4739.34 1.69 0.93 0.070

Low Dropout
UN GROUP = TRT 4861.70 1.85 0.703 0.009
UN 4867.68 1.82 0.699 0.010
UN EMPIRICAL 4867.68 1.82 0.666 0.007
TOEPH GROUP = TRT 4888.93 1.82 0.647 0.005
TOEPH 4897.89 1.79 0.649 0.006
TOEPH EMPIRICAL 4897.89 1.79 0.662 0.006
CSH 5030.40 1.76 0.705 0.013
CSH EMPIRICAL 5030.40 1.76 0.667 0.008
CSH GROUP = TRT 5031.92 1.80 0.708 0.011

a UN, unstructured; TOEPH, heterogeneous toeplitz; CSH, heterogeneous com-
pound symmetric; GROUP = TRT means that separate structures were fit for 
each treatment group; Empirical means that empirical (sandwich-based) estima-
tors of the standard error were used rather than the model-based  standard errors.



265Example Analyses of Clinical Trial Data
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from the low dropout data set are shown in Figure 21.4. These figures show 
an unusual observation with a large residual. This value is seen in the upper 
left corner of the upper left panel, the residual–predicted value plot. This out-
lier is also seen in the far right tail of the residual histogram in the upper right 
panel, and in the upper right corner of the Q–Q plot in the lower left panel.

Box plots of residuals for each treatment-by-time combination in the 
low dropout data set are shown in Figure 21.5. These plots show the aber-
rant residual was in Treatment 2 at Week 8, an especially important find-
ing because the primary analysis was the treatment contrast at Week 8. 
The magnitude of the aberrant residual was approximately twice that of the 
next largest residual.

RLDs for each patient in the low dropout data set are shown in Figure 21.6. 
The largest RLD value was, not surprisingly, from the same patient with the 
aberrant residual. This patient had an RLD of nearly 40, which was five-fold 
greater than the next largest RLD.

Additional measures of influence (not presented here) include case dele-
tion metrics based on Cook’s D, as described in Chapter 11, to assess the 
influence of individual patients on each specific model parameter, including 
fixed effects and covariance parameters. The influential patient identified 
above was influential on a number of fixed effect and covariance parameters, 
especially those involving Week 8.

The visit-wise data for the most influential patient is listed in Table 21.6. 
The data were unusual in several regards. The baseline HAMD score of 35 
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indicated this was one of the most severely ill patients. The patient had 
improvements at Weeks 1 through 6 that were greater than the group means. 
However, from Weeks 6 to 8 that patient had a marked worsening in condi-
tion, going from an improvement of 18 points to a worsening of 4 points. 
This 22-point change was the largest visit-to-visit change in the data set and 
was opposite in direction of other large changes. Interestingly, the patient-
rated PGIIMP scores for this patient at Weeks 4 and 6 were 7, indicating a 
marked worsening; whereas, the corresponding clinician-rated HAMD scores 
showed improvement at those assessment times. At Week 8, the clinician-rated 
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TABLE 21.6

Visit-Wise Data for the Most Influential Patient in the Low Dropout Data Set

Treatment Site
Baseline 
HAMD Time

HAMD 
Change PGIIMP

2 141 35 1 −6 3
2 − 7 5

4 − 13 7

6 − 18 7

8 4 .
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HAMD scores reflected the worsening, and the PGIIMP score was missing. 
This unusual profile and the conflict between the  clinician-rated HAMD 
scores and the patient-rated PGIIMP scores should  trigger additional investi-
gation. Entries in comment fields of case report forms and/or other site docu-
mentation could help lend insight into the situation.

21.4.4 Analyses with Influential Patients and Sites Removed

As previously noted, given the small number of sites, influence of each site 
was investigated by removing each site one at a time and repeating the pri-
mary analysis on the data subsets. In situations with more sites, influence 
diagnostics would be used to identify influential sites and the primary analy-
sis repeated after removing each influential site. Emphasis was placed on the 
magnitude of change in the treatment contrasts rather than maintenance of 
statistical significance because of the markedly smaller sample size when a site 
was deleted. Results for this case deletion of sites are summarized in Table 21.7.

In the high dropout data set, deleting sites 003 and 028 decreased the treat-
ment contrasts slightly. Deleting sites 005 and 001 increased the treatment 
contrasts slightly. Although statistical significance was lost when deleting 
site 003, this was due to the decreased sample size (nearly 300 observa-
tions removed) rather than a smaller treatment contrast. In the low dropout 
data set, deleting site 121 had the greatest effect on the treatment contrast. 
However, the treatment contrast remained significant. Therefore, statistical 
significance was not driven by a single site in either of these two data sets.

TABLE 21.7

Influence of Sites on Endpoint Contrasts in the High and Low 
Dropout Data Sets

Numbers of
Endpoint 
ContrastData Set Patients Observations P

High Dropout
All Data 200 830 2.37 0.021
Drop Site 005 175 723 2.96 0.008
Drop Site 001 165 684 2.78 0.013
Drop Site 028 159 677 2.18 0.049
Drop Site 003 132 536 2.27 0.079

Low Dropout
All Data 200 961 1.85 0.008
Drop Site 121 167 801 1.56 0.047
Drop Site 131 145 694 1.82 0.028
Drop Site 141 147 710 2.10 0.005
Drop Site 101 141 678 1.77 0.044
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The impact of influential patients was also assessed using a case deletion 
approach. However, all patients identified as influential were deleted by 
treatment group rather than one at a time, except for the most influential 
patient in the low dropout data set. In that instance results were repeated 
after removing just that one patient. Results from analyses of the primary 
outcome excluding influential patients are summarized in Table 21.8.

In the high dropout data set, the five most influential patients were investi-
gated; two were randomized to the drug arm and three to placebo. Dropping 
placebo-treated influential patients decreased the endpoint contrast slightly. 
Dropping drug-treated influential patients increased the endpoint contrast 
slightly, as did dropping all influential patients.

In the low dropout data set, the six most influential patients were investi-
gated; two were randomized to the drug arm and four to placebo. Dropping 
all placebo-treated influential patients decreased the endpoint contrast. 
Dropping all drug-treated influential patients increased the endpoint 
 contrast, as did dropping all influential patients. Dropping only patient 
6602, the most influential patient, resulted in a comparatively large increase 
in the treatment contrast and a decrease in the standard error. Patient 6602 
had a very unusual response profile, which resulted in noticeable reduc-
tions in magnitude and precision of the estimated treatment contrast.

Observations with a studentized residual ≥ 2.0 or ≤ − 2.0 were considered 
aberrant. The primary analysis was repeated with all observations from 
drug-treated patients having aberrant residuals removed, with all observa-
tions from placebo-treated patients having aberrant residuals removed, and 
deleting all the observations having aberrant residuals. Results are summa-
rized in Table 21.9.

TABLE 21.8

Endpoint Contrasts for All Data and for Data with Influential 
Patients Removed from the High and Low Dropout Data Sets

Numbers of
Endpoint 
ContrastData Set Patients Observations P

High Dropout
All Data 200 830 2.29 0.024
Drop All 195 808 2.50 0.015
Drop Drug 198 823 2.59 0.010
Drop Placebo 197 815 2.21 0.032

Low Dropout
All Data 200 961 1.82 0.010
DROP 6602 199 956 2.07 0.002
Drop All 194 931 1.97 0.003
Drop Drug 196 941 1.97 0.003
Drop Placebo 198 951 1.80 0.011
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In both the high dropout and low dropout data sets, excluding all placebo-
treated patients with aberrant residuals decreased the endpoint contrast. 
Excluding drug-treated patients and all patients with aberrant residuals 
increased the endpoint contrast. However, changes in the treatment contrasts 
were small. Given the decrease in sample size due to excluding patients, 
influence on the treatment contrast is best judged by changes in magnitude 
rather than statistical significance. However, preservation of statistical sig-
nificance for the treatment effect provided an extra level of assurance that 
outlier patients did not influence inferences.

21.5 Sensitivity to Missing Data Assumptions

21.5.1 Introduction

In this section, a variety of MNAR approaches are implemented to assess 
the sensitivity of results from the primary analysis to departures from 
MAR. In practice, not all these approaches would be needed. As illustrated 
in Chapter 18, controlled imputation approaches to sensitivity analyses are 
easy to understand and implement. For this reanalysis, the marginal delta-
adjustment approach was chosen as the primary basis upon which sensi-
tivity was assessed. Results from other MNAR approaches are included for 
illustration.

The intent is not to imply that delta adjustment is always the best choice for 
assessing sensitivity. Rather, the intent is to illustrate the general attributes of 

TABLE 21.9

Endpoint Contrasts for All Data and Data with 
Subjects Having Aberrant Residuals Removed 
from the High and Low Dropout Data Sets

Number of 
Observations

Endpoint 
Contrast P

High Dropout
All Data 830 2.29 0.024
Drop All 796 2.42 0.009
Drop Drug 809 2.57 0.006
Drop Placebo 817 2.13 0.035

Low Dropout
All Data 961 1.82 0.010
Drop All 915 1.92 0.002
Drop Drug 938 2.16 0.001
Drop Placebo 938 1.59 0.019
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a variety in methods while also implementing a decision-making framework 
that would be useful in realistic scenarios.

21.5.2 Marginal Delta Adjustment

The marginal delta adjustment approach was implemented similar to the 
approach utilized in Code Fragment 18.1. In the present application, m = 100 
imputations was shown to stabilize results and therefore each delta adjust-
ment analysis used 100 imputed data sets. Results from applying marginal 
delta-adjustment to the high and low dropout data sets are summarized in 
Table 21.10. In the marginal approach, the delta adjustment at one visit does 
not influence imputed values at other visits. Results from using delta = 0 
(i.e., no adjustment, the MAR result) are included for reference. The MAR 
(delta = 0) results differ slightly from the primary results in Table 21.2 because 
the primary result was generated using direct likelihood and the delta = 0 
results in Table 21.10 are based on multiple imputation.

Deltas were progressively increased in the tipping-point format to identify 
the magnitude of delta needed to overturn the primary results. Delta = 2 was 
a particularly informative choice because that delta was approximately equal 
to the treatment effect and therefore is a useful reference point in gauging 
plausibility of a departure from MAR (Permutt 2015b). Specifically, a delta 
equal to the average treatment effect would typically be considered a plau-
sible departure, but perhaps the largest plausible departure.

Using delta = 2, the endpoint contrast was significant in the low drop-
out data set, but significance was lost in the high dropout data set. In fact, 
delta = 1 was sufficient to overturn significance in the high dropout data set. 
In the low dropout data set, delta = 7 was required to overturn significance.

TABLE 21.10

Results from Marginal Delta-Adjustment Multiple Imputation—Delta 
Applied on Last Visit to Active Arm Only

Value of 
Delta Adj

Low Dropout Data Set High Dropout Data Set

Endpoint 
Contrast

Standard 
Error P

Endpoint 
Contrast

Standard 
Error P

0 1.86 0.70 0.008 2.27 1.12 0.042
1 1.79 0.70 0.011 1.96 1.13 0.083
2 1.71 0.70 0.015 1.64 1.14 0.151
3 1.64 0.71 0.201
4 1.57 0.71 0.027

5 1.50 0.72 0.037

6 1.42 0.72 0.049

7 1.35 0.73 0.065
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Increasing the delta applied to the endpoint visit had a consistent and 
therefore predictable effect on the endpoint contrasts. For each 1-point 
increase in delta, the endpoint contrast was decreased by approximately 0.08 
points in the low dropout data set and by approximately 0.30 points in the 
high dropout data set. As discussed in Chapter 18, this systematic change is 
intuitive in that 8% of the values were missing for Treatment 2 at endpoint in 
the low dropout data set, and 30% of the values were missing for Treatment 2 
in the high dropout data set.

As discussed in Chapter 18, the effect of a marginal delta adjustment on 
the endpoint contrast can be analytically determined as follows:

 Change to the endpoint contrast = Δ × π 

where π = the percentage of missing values and Δ = the marginal delta 
adjustment

These results help reinforce the straightforward and easy to understand 
nature of marginal delta adjustment. First, there is a direct correspondence 
between the fraction of missing values and the sensitivity of results to depar-
tures from MAR. If π is cut in half, Δ will have half the effect on the endpoint 
contrast. In addition, progressively increasing delta results in predictable 
and easy to understand changes in the endpoint contrasts that make for a 
useful stress test to ascertain how severe departures from MAR must be in 
order to overturn inferences from the MAR result.

21.5.3 Conditional (Sequential) Delta Adjustment

Results from conditional (sequential) delta adjustment are summarized in 
Table 21.11. In conditional delta adjustment, imputations are done sequen-
tially, visit-by-visit, with patients’ delta-adjusted imputed data contributing to 
imputed values at subsequent visits. The net effect of sequential imputation 
is that when deltas are applied to each visit, they have an accumulating effect 
such that patients who drop out earlier have larger “net” deltas (indicating a 
more severe departure from MAR) than patients who drop out later.

TABLE 21.11 

Results from Delta-Adjustment Multiple Imputation—Delta Applied 
on All Visits After Discontinuation to Active Arm Only

Value of 
Delta Adj

Low Dropout Data Set High Dropout Data Set

Endpoint 
Contrast

Standard 
Error P

Endpoint 
Contrast

Standard 
Error P

0 1.85 0.71 0.009 2.31 1.02 0.024
0.5 1.77 0.71 0.013 2.00 1.03 0.051
2.0 1.52 0.73 0.037
2.5 1.44 0.74 0.051
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In the high dropout data set, the delta = 0.5 points on the HAMD17 over-
turned the primary result (P > 0.05). The endpoint contrast changed 0.62 for 
each 1-point change in delta. The corresponding tipping point in the low 
dropout data set was 2.5 points, with the endpoint contrast changing 0.16 for 
each 1-point change in delta.

In the conditional approach, the impact of delta for a patient in the drug 
group withdrawing at Week 2 was the accumulation of an increment of approx-
imately delta × 1 + the sum of the correlations between Week 2 and subsequent 
visits. That is, delta × (1 + 0.51 + 0.63 + 0.83) = 2.97 in the high dropout data set. 
An early dropout therefore had a nearly threefold greater accumulation—and 
therefore larger impact—than missing data at the last visit only.

In the conditional approach, it is still possible to analytically derive the 
impact of a particular delta, but the calculations are more involved. The net 
effect of a conditional delta can be approximately explained using the accumu-
lations described above, as applied to each assessment week, and the number 
of subjects discontinuing at each week, divided by the total number of subjects: 
0.5 × (9 × 2.97 + 6 × 2.46 + 10 × 1.83 + 5 × 1)/100 = 0.32. The corresponding tipping 
point in the low dropout data set was 2.5 points with a shift of 0.41, which is 
approximately explained as 2.5 × (2 × 2.66 + 3 × 2.29 + 2 × 1.77 + 1 × 1)/100 = 0.42.

In marginal delta adjustment, each patient has the same impact on the 
endpoint contrast and it is therefore easier to understand the impact of any 
particular delta. In conditional delta adjustment, the impact on the endpoint 
contrast is not the same for each patient—it varies by time of dropout. If the 
same delta is applied at each visit in the conditional approach, patients drop-
ping out earlier have a greater impact on the endpoint contrast because the 
“net” delta has a greater accumulation over visits.

21.5.4 Reference-Based Controlled Imputation

Results from reference-based imputation analyses are summarized in 
Table  21.12. Recall that the jump to reference approach (J2R) assumes 
the benefit of the drug immediately disappears after discontinuation or 
rescue; copy reference (CR) assumes a decaying benefit; and copy incre-
ment from reference (CIR) assumes a constant benefit. For these data, J2R 
is a reasonable worst plausible case sensitivity analysis. That is, if results 
from J2R were significant, then results from the primary analysis could 
be declared robust to plausible departures from MAR. Results were also 
assessed using CR and CIR for illustration. Analyses were conducted using 
the SAS macros made available freely to the public by the Drug Information 
Association’s (DIA) Scientific Working Group for missing data at www.
missingdata.org.uk.

As expected, treatment contrasts from J2R were smaller than from CR, and 
the treatment contrasts from CR were smaller than CIR. Also as expected, 
the J2R results closely mirror results from marginal delta-adjustment when 
delta is approximately equal to the mean difference between treatments. 
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In the high dropout data set, the endpoint contrast from J2R was 1.60 
(SE = 0.99, P = 0.110). In the low dropout data set, the endpoint contrast from 
J2R was 1.71 (SE = 0.70, P = 0.016). The difference from MAR was approxi-
mately sixfold smaller in the low dropout data set than in the high dropout 
data set. Statistical significance was preserved in the low dropout data set, 
but not for the high dropout data set.

21.5.5 Selection Model Analyses

A selection model was fit in which the parameters describing the MNAR 
part of the model were varied. The primary outcome was assessed using 
a repeated measures model similar to the primary analysis, and the prob-
ability of dropout was simultaneously modeled using a logistic regression 
that fit the log odds of dropout as a function of visit, separate intercepts 
(Ψ1, Ψ2) for each treatment group, and separate linear regression coefficients 
for previous (Ψ3, Ψ4) and current (possibly unobserved) efficacy outcomes 
(Ψ5, Ψ6). Hence, the outcome variable from the measurement model was a 
covariate in the dropout model. Fitting separate missingness models for each 
treatment allowed for different departures from MAR for drug and placebo 
groups. Analyses were implemented using macros made available freely to 
the public by the DIA Scientific Working Group for missing data at www. 
missingdata.org.uk.

The parameters Ψ5 and Ψ6 were of particular interest because they were 
the “MNAR” part of the model. These values assess the change in log odds 
for withdrawal per unit increase in the outcome measure. A value of 0.2 
indicated that the odds of withdrawal increased by a factor 1.22 (e0.2) for 
each 1-point change on the HAMD17. Setting Ψ5 and Ψ6 = 0 was important 

TABLE 21.12 

Results from Reference-Based Multiple Imputation of the High 
and Low Dropout Data Sets 

LSMEAN Changes
Endpoint 
Contrast

Standard 
Error PPlacebo Drug

High Dropout
MAR − 5.95 − 8.24 2.29 1.00 0.024
J2R − 5.97 − 7.57 1.60 0.99 0.110
CR − 5.96 − 7.71 1.75 0.98 0.075
CIR − 5.95 − 7.78 1.83 0.97 0.040

Low Dropout
MAR − 10.56 − 12.40 1.84 0.70 0.009
J2R − 10.55 − 12.26 1.71 0.70 0.016
CR − 10.55 − 12.27 1.72 0.70 0.015
CIR − 10.55 − 12.27 1.72 0.70 0.015
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because the missingness and outcome models become independent and the 
model reduces to the MAR model in the primary analysis.

Results from selection model analyses of the high dropout data set with 
varying levels of both Ψ5 and Ψ6 are summarized in Table 21.13. These 
results are used to illustrate general aspects of selection model results. 
Subsequently, selection models are implemented in a tipping point approach 
for both the high dropout and low dropout data sets.

As expected, when Ψ5 = Ψ6 = 0, results matched results from the primary 
direct likelihood analysis. With negative values for Ψ5 and Ψ6, the within-
group mean changes were greater than the mean changes when assuming 
MAR (Ψ5 = Ψ6 = 0). Conversely, positive values for Ψ5 and Ψ6 led to smaller 
within-group mean changes. A positive Ψ value implied that patients with 
negative residuals were more likely to drop out, leading to greater mean 
changes observed in the remaining data, with the selection model compen-
sating for this by reducing the lsmean.

When there is more dropout in the placebo group and Ψ5 = Ψ6 < 0, the within-
group mean change increased more in the placebo group than the drug 
group and the endpoint contrast was reduced. Conversely with Ψ5 = Ψ6 > 0, 

TABLE 21.13 

Results from Selection Model Analyses of High Dropout Data Set

Input Values Week 8 LSMEANS
Endpoint 
Contrast 

Standard 
Error PΨ5

a Ψ6
a Placebo Drug

0.2 0.2 4.87 7.33 2.46 1.09 0.023
0.0 0.2 5.60 7.38 1.78 1.05 0.091
−0.2 0.2 6.28 7.41 1.18 1.05 0.282

−0.4 0.2 6.76 7.42 0.66 1.06 0.527

0.2 0.0 4.94 7.97 3.03 1.07 0.005
0.0b 0.0 5.63 8.00 2.37 1.04 0.022
−0.2 0.0 6.29 8.04 1.75 1.02 0.087

−0.4 0.0 6.75 8.05 1.30 1.02 0.204

0.2 −0.2 4.97 8.57 3.60 1.06 0.001
0.0 −0.2 5.67 8.57 2.89 1.03 0.004

−0.2 −0.2 6.31 8.59 2.29 1.01 0.024

−0.4 −0.2 6.76 8.63 1.86 1.01 0.064

0.2 −0.4 4.97 8.97 4.01 1.07 <0.001
0.0 −0.4 5.68 8.96 3.28 1.03 0.002

−0.2 −0.4 6.33 8.98 2.64 1.01 0.009

−0.4 −0.4 6.78 9.01 2.22 1.01 0.027

a Ψ5 and Ψ6 are the regression coefficients (placebo and drug, respectively) 
for the association between the current, possibly missing efficacy scores 
and the logit for probability of dropout. 

b Results differ from the primary result because the baseline value by site 
interaction was not fit in the selection model.
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the endpoint contrast was increased. However, it is important to notice that 
whenever Ψ5 = Ψ6, that is, when the same MNAR model is assumed for both 
treatment arms, the impact of MNAR on the treatment contrast was fairly 
small.

When the input values for Ψ5 and Ψ6 differed, between-group differences 
(endpoint contrasts) followed a consistent pattern dictated by the within-
group changes previously noted. Whenever Ψ6 (the regression  coefficient for 
the drug group) was less than Ψ5 (the regression coefficient for the placebo 
group), the treatment contrast was greater than from the MAR primary anal-
ysis. When Ψ5 was greater than Ψ6, the treatment contrast was smaller than 
in MAR.

An understanding of these relationships can be used to systematically 
vary Ψ5 and Ψ6 in a selection model to generate departures from MAR in 
a tipping point approach. Results from a selection model tipping point 
sensitivity analyses are summarized in Table 21.14. A value of Ψ5 = 0 was 
used to assume MAR for the placebo group. Recall that standard imple-
mentations of delta-adjustment and reference-based controlled imputa-
tions assume MAR for placebo. Values of Ψ6 were progressively changed 
to create increasing departures from MAR that reduced the treatment 
contrasts. In the high dropout data set, Ψ6 = 0.2 overturned the primary 
result. In the low dropout data set, Ψ6 > 1.0 was required to overturn the 
primary result.

Although selection models can be used in a tipping point approach much 
the same way as delta-adjustment, judging the plausibility of departures 
from MAR is more complex in selection models. The regression coefficients 
(Ψ) in selection models are on the log odds scale. Judging plausibility there-
fore requires judging plausibility of changes in log odds per unit change in 
the (possibly unobserved) outcome measure.

TABLE 21.14

Results from Tipping Point Selection Model Analyses of High Dropout 
and Low Dropout Data Sets

Input Values Low Dropout Data Set High Dropout Data Set

Ψ5
a Ψ6

a Endpoint Contrast P Endpoint Contrast P

0 0.0 1.81 0.008 2.29 0.019
0 0.2 1.72 0.012 1.62 0.114
0 0.4 1.64 0.018 – –
0 0.6 1.54 0.028 – –
0 0.8 1.48 0.036 – –
0 1.0 1.41 0.047 – –
a Ψ5 and Ψ6 are the regression coefficients (placebo and drug, respectively) for the 

association between the current, possibly missing efficacy scores and the logit for 
probability of dropout.
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For example, the value of Ψ that was sufficient to overturn the primary 
result in the high dropout data set was 0.2. This result indicated that if the 
odds of dropout increased by a factor 1.22 for each 1-point change on the 
current, possibly missing HAMD17 score, the primary result would be over-
turned. The value of Ψ that was needed to overturn the primary result in the 
low dropout data set (>1.0) indicated that the odds of dropout had to increase 
approximately three-fold for each 1-point change in the current, possibly 
missing HAMD17 in order to overturn the primary results.

With mean baseline scores of 20 and standard deviations >5, a 1-point 
change in HAMD is a small change. Therefore, the three-fold increase in 
odds of withdrawal per 1-point change in HAMD needed to overturn results 
in the low dropout data set doesn’t seem plausible. Results in the low drop-
out data set appear to be robust to plausible departures from MAR.

In the high dropout data set, results are less clear. The key question is 
whether it is plausible that the odds of withdrawal could increase by a fac-
tor of 1.22 for each 1-point change in HAMD. This setup is less intuitive 
and transparent than in delta adjustment, where plausibility simply requires 
judging the magnitude of delta.

21.5.6 Pattern Mixture Model Analyses

Results from pattern-mixture model (PMM) analyses under various identi-
fying restrictions are summarized in Table 21.15. Analyses were conducted 
using the macros made available freely to the public by the DIA Scientific 
Working Group for missing data at www.missingdata.org.uk.

Three identifying restrictions were implemented. The ACMV restriction 
assumed MAR, whereas CCMV and NCMV assumed MNAR. Therefore, 
comparing results from ACMV with those from other restrictions assessed 
the impact of departures from MAR.

Pattern mixture model analysis requires that all parameters are estimable 
in all patterns of dropouts. For analysis of the high dropout data set, sites 
had to be pooled into two grouped sites. Analysis of the low dropout data 

TABLE 21.15 

Results from Pattern-Mixture Model Analyses 
of High Dropout Data Set

Identifying 
Restriction

Endpoint 
Contrast

Standard 
Error P

ACMV 2.67 1.17 0.022
CCMV 2.51 1.05 0.016
NCMV 2.87 1.69 0.089

Note: ACMV = available case missing values, 
CCMV  = complete case missing values, 
NCMV =  neighboring case missing values.
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set was not feasible because, with so few missing observations, the treatment 
effect was not estimable in all dropout patterns.

Compared with ACMV, the endpoint contrast and standard error in the 
high dropout data set were slightly smaller in CCMV and larger in NCMV. 
Notice the large standard error for the NCMV result. Even with a high rate 
of dropout, the number of patients in certain patterns was limited, which in 
turn reduced precision of results, leading to a nonsignificant contrast even 
though the point estimate was larger than in ACMV.

21.6 Summary and Drawing Conclusions

21.6.1 Overview

The preceding examples from the high and low dropout data sets illustrated 
some fundamental points in analyzing longitudinal data. The primary 
analysis focused on a precisely defined estimand, in this instance a de jure 
estimand. Aspects of the model that could be evaluated from observed data 
were checked. Sensitivity analyses were used to aid understanding of the 
degree to which departures from MAR for the unobserved data could alter 
inferences from the primary analysis. A secondary estimand from the de 
facto family was also evaluated.

These illustrations were not intended to be general prescriptions or spe-
cific recommendations. The intent was to illustrate general approaches and 
considerations. Certainly, other approaches could be considered in these 
situations. And other situations could require different approaches.

Perhaps the most important aspect of these illustrations was the benefit 
from lower rates of missing data. Although this chapter in particular—and 
this book in general—focuses on analytic methods, the inescapable conclu-
sion is that analyses can only assess sensitivity. Preventing missing data is 
the only way to improve sensitivity to missing data assumptions.

Importantly, the greater variability in results across various model assump-
tions from the high dropout data set was not limited to sensitivity analyses 
for plausible MNAR scenarios. Results from some of the standard diagnos-
tics, such as choice of covariance structure, also showed greater variability 
with higher dropout.

21.6.2 Conclusions from the High Dropout Data Set

The primary analysis yielded a statistically significant result. Residual diagnos-
tics showed no evidence that nonnormality or nonlinearity had an appreciable 
influence on results, thereby suggesting the model was appropriate. No patients 
or sites were found to have had a strong influence on results. The unstructured 
covariance specified in the primary analysis provided the best fit to the data. 
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However, the possibility of plausible departures from MAR overturning the 
primary result could not be entirely ruled out. Evidence for a treatment effect 
was supported by significance on the secondary de facto estimand.

The decision we would make from these analyses is that treatment was 
significantly better than placebo. However, we recognize the difficulty in 
making black and white decisions, and that others could come to a different 
decision. Again, the most important aspect of the illustration is not the deci-
sion itself, but rather the process for arriving at it.

21.6.3 Conclusions from the Low Dropout Data Set

The primary analysis yielded a statistically significant result. Residual diag-
nostics showed one clear outlier but no evidence that nonnormality or non-
linearity systematically influenced results, thereby suggesting the model 
was appropriate. Influence diagnostics also noted the aberrant patient with a 
very large residual. The RLD for this patient suggested it had an appreciable 
influence on results. However, that patient had an unfavorable outcome in 
the treatment group and therefore deleting data from that patient increased 
the magnitude and significance of the primary result. No one site had an 
undue influence on results. The unstructured covariance specified in the pri-
mary analysis provided one of the best fits to the data and significance of the 
primary result was insensitive to choice of covariance structure. Inferences 
from the primary analysis were robust to even the largest plausible depar-
tures from MAR.

Model diagnostics and sensitivity analyses, combined with a low rate of 
missing data, confirm the robustness of these results. Therefore, the deci-
sion we would make from these analyses is that treatment was significantly 
 better than placebo.
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Data; see also Missing data
binary longitudinal, 117–119
categorical, 113–121, 233–239, 244
complete, 14, 22, 24, 26, 29, 50, 143
complete and balanced, impact of 

variance and correlation in, 
49–52

completeness, 22
continuous, 115, 116, 118, 119, 233, 

234–235, 244
convergence, 252–253
cross-sectional, 64–66
example, 25–33
follow-up, 20–21, 22
Gaussian, 114, 115
incomplete, 29, 134–135, 233–239
incomplete (unbalanced), impact 

of variance and correlation 
in, 52–54

longitudinal, 64–66
missing at random (MAR), 12
multinomial, 119–120
observed, 205, 245–246, 250
outliers, 123–124, 130
post-rescue, 12–13, 243–244
pseudo, 116–117
unobserved, 135, 141, 205

Data collection, 17, 22, 23, 123
Death, 21

Decision making, inference and, 
251–252

De facto estimands, 7–10, 14–16, 243
De jure estimands, 7–9, 12, 14–16, 243
Delta adjustment, 272–274
Delta-adjustment approach, 221, 

223–226, 230, 251
Dependent variable

choice of, 63
distribution of, 66–68
form of, 66–70

Descriptive analyses, 259–260
Design considerations

in choosing estimands
missing data, 9
rescue medication, 9–12

Direct likelihood analysis, 167–168, 173, 
181, 201

example language for, 255
Direct maximum likelihood, 155–161, 

177–178
code fragments, 161
example, 158–161
introduction to, 155
technical details, 155–158

Donor case, 148–149
Dose titration, 19
Double-blind, placebo-controlled trials, 

10, 21
Doubly robust (DR) methods, 205–216

code fragments, 213–216
example, 211–213
introduction to, 205–206
specific implementations, 209–211
technical details, 206–209

DR. See Doubly robust (DR) methods
Dropouts, 18, 19, 133, 136, 194, 246–247, 

279–280
Drug benefits, 8
Drug development, 7
Drug Information Association (DIA), 229
Drug risks, 9

E

Effectiveness, 4, 7, 9–10, 13–15, 16, 21, 133, 
147, 180, 222, 226, 244

Efficacy, 4, 5, 7, 8, 10, 14–16, 19, 20, 24, 30, 
133, 134, 143, 145, 147, 179–180
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Empirical BLUE, 47
Empirical BLUP, 47
Enrichment, 18–19
Equations

generalized estimating, 55–57, 119, 
120, 155

mixed model, 37–49
generalized least squares, 44
inference tests, 48–49
mixed-effects models, 44–48
ordinary least squares, 37–44

Errors, 123
measurement, 71
standard, 50, 52, 152, 248
within-subject, 248

Estimands
categories of, 7
choosing, 5–12, 243–244

analysis considerations, 12–14
design considerations in, 9–12
fundamental considerations in, 

8–9
primary, 15–16

defined, 5
introduction to, 5–8
missing data and, 6
multiple, in same study, 14–15, 243
in randomized trial, 5–6

Estimation
categorical data, 116–117
likelihood-based, 57–58, 73, 136–137, 

139, 244
Estimation methods

choosing, 244
in mixed-effects models, 54–58

generalized estimating 
equations, 55–57

inferential frameworks, 54
least squares, 54–55
maximum likelihood, 57–58, 

157–158, 163, 169, 205
Ethical patient care

placebos and, 16
rescue medications and, 10

Example data sets, 25–33
large, 25–26
small, 26, 28–30

Exploratory studies, 244–245, 246, 
248, 251

F

Fixed effects, 35, 72
time as, 88–89

Flexible dosing, 19
Follow-up data, 20–21, 22
Follow-up periods, 19–20
Fully conditional specification 

(FCS), 235

G

Gaussian data, 114, 115
GEE. See Generalized estimating 

equations
Generalized estimating equations 

(GEE), 55–57, 119, 120, 155
inverse probability weighted, 193–203
weighted, 205

Generalized least squares, 44
Generalized linear mixed-effect model 

(GLMM), 115, 116
Generalized linear model (GLM), 116
Gibbs method, 166
Guiding principles, for statistical analysis 

plan development, 243–245

H

HAMD17, 25, 29, 118
Hamilton Depression Rating Scale, 72
Heterogeneity, in treatment effects, 97
Heterogeneous compound symmetric 

(CSH) structure, 74–75
Hierarchical inference, 244
Hot-deck imputation, 148–149

I

ICH E9 guidance, 11, 244
ICH E10 guidance, 11
Imputation models

controlled imputation approaches, 
221–222, 251

hot-deck, 148–149
multiple imputation, 13, 139, 

163–191, 244
single imputation from a predictive 

distribution, 149–153
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Incentives, for study completion, 23
Inclusive models

missing data and, 141
using, in MI, 183–186

Incomplete categorical data
code fragments, 237–239
methods for, 233–239

examples, 235–236
likelihood-based, 233–234
multiple imputation, 234, 

235–236
overview of, 233
weighted GEE, 234–235, 236

Incomplete data, 29; see also 
Incomplete categorical data; 
Missing data

drawing inferences from, 134–135
Inference, 19

Bayesian, 166, 168
conditional, 58–60
decision making and, 251–252
hierarchical, 244
from incomplete data, 134–135
joint, 58–60
marginal, 58–60, 244
MI, 175–176

Inference tests, 48–49
Inferential frameworks, 54
Influence diagnostics, 124–130, 

249–250
Informative censoring, 137
Institutional Review Boards, 23
Intended data, collection of, 17
Intervention effect, 5, 134
Invasive procedures, 21
Inverse probability (IP) estimator, 193
Inverse probability weighting (IPW), 

139, 193–203
code fragments, 201–203
example, 199–201
general considerations, 194–197
introduction to, 193
models, 205–206
specific implementations, 198–199
technical details, 194–199

Investigator payments, 23
IPW. See Inverse probability 

weighting (IPW)
ITT (intention to treat) principle, 11

J

Joint inference, 58–60
Joint likelihood, 156
Jump to reference (J2R) approach, 

226–229

L

Last observation carried forward 
(LOCF), 139, 146–148

LDA analysis, 101–104
Least square mean, 40, 50, 52, 106, 

107, 145
Least squares estimation, 54–55
Likelihood-based analysis, 233–234

direct maximum likelihood and, 
155–161

Likelihood-based estimation, 57–58, 73, 
136–137, 139, 244

Linearized model, 117
Linear mixed-effects models, 36, 57–58, 

114, 115, 233, 244
LOCF. See Last observation carried 

forward (LOCF)
Longitudinal analysis, 64, 68, 70, 72, 

97, 121
Longitudinal contrasts, 64–66
Longitudinal trials, 59, 71, 85, 97, 

112, 133
example analyses of, 259–280

M

Main effects, interactions between, 43
MAR. See Missing at random (MAR)
Marginal delta adjustment, 272–273
Marginal inference, 58–60, 244
Marginal models, 113–114

for categorical data, 114–115
Markov Chain Monte Carlo (MCMC) 

methods, 166
Maximum likelihood (ML) estimation, 

57–58, 157–158, 163, 169, 205
Maximum likelihood estimators 

(MLE), 57
MCAR. See Missing completely at 

random (MCAR)
Mean percent change, 69
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Means over time modeling, 85–95, 246
assessing model fit and, 248
code fragments, 91–94
introduction to, 85–88
structured, 88–90

time as fixed effect, 88–89
time as random effect, 89–90

unstructured, 88
Measurement errors, 71
Medical research, 5–6

trial objectives, 6–7
Medications, rescue, 5–6, 9–12, 16, 20
MI. See Multiple imputation
Missing at random (MAR), 12, 135–137, 

139–142, 155, 157–158, 217
inverse probability weighting and, 205
primary analysis and, 247

Missing completely at random (MCAR), 
135–137, 139–140, 155

GEE and, 193, 205
primary analysis and, 246–247

Missing data, 12, 16
assumptions, assessing sensitivity to, 

250–252, 271–280
consequences of, 17
considerations in choosing 

estimands, 9
dealing with, 138–141

analytic approaches, 138–140
baseline observation carried 

forward, 146–148
complete case analysis, 144–146
hot-deck imputation, 148–149
inclusive and restrictive modeling 

approaches, 141
introduction to, 138, 143–144
last observation carried forward, 

146–148
sensitivity analyses, 140–141
single imputation from a 

predictive distribution, 149–153
direct maximum likelihood and, 

155–161
doubly robust methods and, 205–216
estimands and, 6
high rates of, 17
intermittent, 133
introduction to, 133–135
mechanisms, 135–137

minimization of, 17–24
MNAR methods and, 217–232
overview of, 133–142
primary analysis and, 246–247
problem of, 131
weighted GEE and, 193–203

Missing not at random (MNAR), 
135–137, 139–142

Missing not at random (MNAR) 
methods, 13, 217–232, 247

code fragments, 230–231
considerations for, 222–223
controlled imputation approaches, 

221–222
delta-adjustment, 223–226
implementation of, 223–229
reference-based, 226–229

examples, 223–229
introduction to, 217
notation and nomenclature, 217–218
pattern-mixture models, 220–221, 

222–223
selection models, 218–219, 222–223
shared-parameter models, 219, 223
technical details, 217–222

Mixed-effects models, 35–60, 85, 244
building and solving mixed model 

equations, 37–49
generalized least squares, 44
inference tests, 48–49
mixed-effects models, 44–48
ordinary least squares, 37–44

computational time, 253–254
impact of variance and correlation

in complete and balanced data, 
49–52

in incomplete (unbalanced) data, 
52–54

introduction to, 35–36
least squares means, 50, 52
linear, 114, 115
marginal, conditional, and joint 

inference, 58–60
methods of estimation, 54–58

generalized estimating equations, 
55–57

inferential frameworks, 54
least squares, 54–55
maximum likelihood, 57–58
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notation and definitions, 36–37
standard errors, 50, 52

MNAR. See Missing not at random 
(MNAR)

Model checking and verification, 123–130
checking covariate assumptions, 125
code fragments, 126
example, 125–130
influence diagnostics, 124–125, 126–130
introduction to, 123
residual diagnostics, 123–124, 126–130

Model fit, 73, 76, 78, 84, 89, 130, 140, 158, 
181, 248–250, 253

Modeling
categorical covariates, 104–105
categorical data, 114–115
covariance (correlation), 71–84

assessing model fit, 73
code fragments, 80–83
as function of random and 

residual effects, 77–78
as function of random effects, 

73–74
as function of residual effects, 

74–77
introduction to, 71–72
separate structures for groups, 79
study design considerations, 79

means over time, 85–95
code fragments, 91–94
introduction to, 85–88
structured, 88–90
unstructured, 88

Monitoring, 22
Monotone missingness, 143, 158, 171, 

176, 177
Multinomial data, ordinal model for, 

119–120
Multiple estimands, 243

in same study, 14–15
Multiple imputation (MI), 163–191, 244

for categorical outcomes, 186
code fragments, 187–191
example language for, 255–256
examples, 180–186
implementation of, 169–177

accounting for nonmonotone 
missingness, 176–177

analysis, 173–175

imputation, 171–173
inference, 175–176
introduction to, 169–171

for incomplete categorical data, 234, 
235–236

introduction to, 163–164
situations when useful, 177–180

sensitivity analyses, 180
separate steps for imputation and 

analysis, 178–180
when direct likelihood methods 

are difficult or not available, 
177–178

technical details, 164–169
using inclusive models in, 183–186
using to impute covariates, 180–182

Multiple imputation-based approaches, 
13, 139

N

National Research Council, Expert 
panel report, 5

NCMV. See Neighboring Case Missing 
Values (NCMV)

Neighboring Case Missing Values 
(NCMV), 220

Nested effects, 43
Newton–Raphson algorithm, 58
Nonadherence, 8, 12, 13
Nonlinear trends, 85–88
Nonmonotone missingness, 176–177, 

181, 235, 255, 256
Nonnormal distributions, 69, 113, 124
Nonnormality, of outcome variable, 68
Nonrandom selection, 194
Nonresponder imputation 

(NRI), 13–14
Normal distributions, 57, 115, 124, 145, 

149, 150, 151, 153, 157, 163, 165, 
165–167, 176, 178, 185

Normality, of residuals, 68
Normal probability plots, 124
NRC guidance, 20, 22–23, 222

O

Observation-level weighting, 198
Observed case analysis, 144–146
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Observed data, 205, 245–246, 250
Ordinal model, for multinomial data, 

119–120
Ordinary least squares, 37–44
Outcome variable, 63

statistical test of, 63–66
Outliers, 123–124, 130

P

Participants
engagement of, 22
payments to, 23
retention of, 17–18, 22
selection of, 18–19
trial burden on, 22
withdrawal by, 133

Patient compliance, 11, 17, 18, 19
Patient education, 22
Pattern-mixture models (PMMs), 

220–223, 278–279
Percent change, 66, 67, 68, 69
Percent mean change, 69
Phase III trials, 7
Phase II trials, 6–7
Placebos, 9, 10, 13, 16
Plausible worst-case scenarios, 251
PMM. See Pattern-mixture models
Point estimates, in MI, 164
Post-baseline time-varying 

covariates, 179
Post-rescue data, 12–13, 243–244
Predictive distribution, single 

imputation from, 149–153
Pre-specification, 254–255
Pretreatment covariates, 179
Primary analysis

choosing, 245–248
between MAR approaches, 247–248
missing data considerations, 

246–247
observed data considerations, 

245–246
evaluating testable assumptions of, 

262–271
example, 260–261

Primary estimand, choosing, 15–16
Primary outcomes, 21
Protocol, failure to adhere to, 6

Pseudo data, 116–117
Psoriasis area and severity index 

(PASI), 66

Q

Q–Q probability plots, 124

R

Random coefficients regression models, 
85, 89–90

Random effects, 35–37, 72
modeling covariance as function of, 

73–74, 77–78
time as, 85, 89–90

Random effects models, 113–114, 115
Randomization criteria, 19
Randomized, two-arm trial, estimands 

for, 5–6
Randomized withdrawal design, 19
Reference-based controlled 

imputation, 13, 221–222, 
226–231, 251, 274–275

Rescue medication, 5–6, 9–12, 16, 20
confounding effects of, 12, 13

Residual diagnostics, 123–124, 
126–130, 249

Residual effects, 72
modeling covariance as function of, 

74–78
Residuals, normality of, 68
Response, baseline severity as, 100–103
Restricted maximum likelihood 

estimates (RMLE), 58
Restrictive models, missing data and, 141
Retention, maximization of, 17–18, 22
RMLE. See Restricted maximum 

likelihood estimates
Run-in designs, 18–19

S

Sample size, 16, 104, 134, 152, 164, 207, 
244, 252, 256–257, 269, 271

Sampling, from nonnormal 
distribution, 124

Sandwich estimator, 248
Scatter plots, 124
Secondary efficacy outcomes, 179
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Selection models, 218–219, 222–223, 
275–278

Selection probabilities, 194–197
Semi-parametric estimators, 205
Sensible analysis, 134–135
Sensitivity analysis, 12, 140–141, 180, 

221–222, 250–252
Serial correlation, 71, 72, 74, 176
Shared-parameter models, 219, 223
Single imputation from predictive 

distribution, 149–153
Slice option, 106–107
Specification, 254–255
Standard errors, 50, 52, 152, 248
Statistical analysis plan development, 

243–257
assessing model fit, 248–250

covariances, 248–249
influence diagnostics, 249–250
means over time, 248
residual diagnostics, 249

assessing sensitivity to 
missing data assumptions, 
250–252

choosing primary analysis, 245–248
observed data considerations, 

245–246
computational time, 253–254
convergence, 252–253
guiding principles, 243–245
other considerations, 252–254
specifying analysis, 254–256

Statistical test, 63
cross-sectional and longitudinal 

contrasts, 64–66
Stochastic processes, leading to missing 

data, 135–137
Student’s t distribution, 165
Study design, 17–24

covariance modeling and, 79
trial conduct, 21–23
trial design, 18–21

Study development process chart, 7
Study discontinuation, rescue 

medications and, 10
Subgroup analyses, 97
Subject-level weighting, 198–199
Subject-specific effects, 72
Symptomatic trials, 11–12, 13

T

Taylor approximation, 116
Time

as fixed effect, 88–89
as random effect, 89–90

Time effects, 43
Time modeling, 85–88; see also Means 

over time modeling
Time-varying post-baseline 

variables, 179
Tipping point approach, 251–252
Toeplitz (TOEPH) structure, 75
Treatment effects, 43, 97
Trial burden, 22
Trial conduct, 21–23
Trial design, 18–21, 63
Trial objectives, 6–7

U

Univariate estimates, in MI, 164
Unobserved data, 135, 141, 205
Unstructured time modeling, 85–88

V

Variability
random measurement errors and, 71
between-subject, 71

Variable, dependent, choice of, 63
Variance

impact of
in complete and balanced 

data, 49–52
in incomplete (unbalanced) 

data, 52–54
between-subject, 73–74

W

Weighted GEE (wGEE), 193–203, 205
code fragments, 201–203
example, 199–201
for incomplete categorical data, 

234–235, 236
Withdrawals, 133; see also Dropouts
Within-subject correlation, 72, 73–74, 116
Within-subject errors, 248
Wording examples, 254–256
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