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Preface

Adult humans contain about 2 pounds (approximately 0.8 kilograms) of
phosphorus. While this is less than 1% of the total mass of an average 70 kg
person, phosphorus is critical for all life on earth. Phosphorus in biology is
almost exclusively in the P¥ [+5] oxidation state and rarely changes oxidation
states. Essentially all the phosphorus atoms in organisms are present as an-
ions of the fully oxidized inorganic phosphoric acid (H;PO,), its phosphoric
anhydrides, and phosphate monoesters and phosphate diesters. Some 85% of
body phosphorus is present as the solid inorganic calcium phosphate salts of
bone and teeth. The remaining 15% (about 120 grams) is distributed among
soluble inorganic phosphate and organophosphate esters and anhydrides.
The most prevalent and perhaps most central is adenosine triphosphate
(ATP), coming in at an inventory of about 75 grams in an adult human. The
bis-phosphoric anhydride linkages in the triphosphate side chain are acti-
vated thermodynamically, but sufficiently stable kinetically as the tetra-anion
at physiological pH values that ATP is the major cellular energy currency.
Evidence of its metabolic centrality to power almost every mechanical and
chemical process in living organisms is the observation that organisms make
and use their body weight in ATP every day. For humans that could be up to
75 kilograms, representing about a thousand-fold turnover of the ATP pool
daily, 99.9% of which is used to power all the nonequilibrium processes that
keep cells and organisms alive. By the time a human reaches the age of 75 years,
he/she will have biosynthesized and spent up to two million kilograms of ATP to
stay alive. That is testament to phosphoric anhydride chemical biology.
Depending on whether one is energy-centric or information-centric, the
other prime or more prime type of phosphate linkage in organisms is
the phosphodiester linkage. Most notably, the only covalent linkage holding
the monomer nucleotides together in both RNAs and DNAs is the inter-
nucleotide 3’,5-phosphodiester bond. The fidelity of information from
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Preface vii

generation to generation stored in DNA and the transcriptional fidelity of
information transfer from DNA to RNA on the way to all the proteins of
proteomes depends on the kinetic stability of the internucleotide phos-
phodiester bonds, each of which is a monoanionic in biological milieus.

Both RNA and DNA editing, from RNA splicing to restriction endonuclease
cuts on double stranded DNA to clustered regularly interspaced short pal-
indromic repeats (CRISPR)-CRISPR associated protein 9 (Cas9) manipula-
tions of genomic DNA, involve enzyme-mediated internucleotide
phosphodiester phosphoryl group transfers.

The importance of being anionic is at the center of phosphate chemical
biology. The negative charge on inorganic phosphate, phosphoric an-
hydride, phosphodiesters, and phosphomonoesters, so essential to all their
biological roles, stems from the three pKas of the parent phosphoric acid
H,;PO, With pKa; at pH 2, and pKa, at pH 7.2, inorganic phosphate at
physiological pH is approximately 50% the monoanion and approximately
50% the dianion. When glucose is enzymatically phosphorylated to glucose-
6-phosphate it is trapped inside cells because it is a mix of monoanion and
dianion and faces an energy barrier for diffusion out through the lipidic cell
membrane. The internucleotide bonds of RNA and DNA bear one negative
charge at every phosphorus atom, making them polyanions, which both
affects their intrinsic stability as repositories of information and promotes
electrostatic interactions with cations, large and small.

Phosphorus chemical biology thus underlies most of life’s reactions and
processes, from the covalent bonds that hold RNA and DNA together to the
making and spending of 75 kg of ATP every day to run almost all metabolic
and mechanical events in cells, from ion pumping to protein synthesis, to
protein motors moving cargoes to microtubules and other protein polymers
that give shape to cells from moment to moment.

Starting from inorganic phosphate, the most abundant source of phos-
phorus on the planet, in the ionization state of the phosphoric acid dianion,
we examine the chemical consequences of two forms of dual or orthogonal
reactivity. First, is that phosphate anions are electrophilic at the central
phosphorus atom and nucleophilic at the peripheral oxy anions, giving polar
opposite modes of reactivity in organismic metabolism. Second, the dehy-
drative condensation of two molecules of phosphoric acid yields the thermo-
dynamically activated phosphoric anhydride linkage that is also kinetically
stabilized at physiological pH, in part by the phalanx of surrounding oxyanion
negative charges. This second duality, thermodynamic activation with unusual
kinetic stability, allows ATP and congeners to power otherwise unfavorable
equilibria as the side chain phosphoric anhydride linkages are hydrolyzed.

Phosphate chemistry is so pervasive in biology that it undergirds almost
every contemporary topic in biochemistry, molecular biology, and cell biol-
ogy. Phosphodiester chemistry enables RNA splicing and CRISPR-Cas9
editing of genomes. Phosphoryl transfers arising from the attack of nu-
cleophilic substrates on Py of ATP (cleaving the PB-O-Py anhydride linkage)
both dominate low molecular weight carbohydrate metabolism and carry the
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flux of all 520 protein kinases of the human kinome. Attacks by cosubstrate
nucleophiles instead at Po of ATP, congeneric NTPs, and on Pa of 2’deoxy
ATP and dNTP congeners to cleave the Pa-O-Pf phosphoric anhydride side
chain, constitute nucleotidyl transfers that are the dominant reactivity mode
for building or replicating RNAs, DNAs, proteins, oligosaccharides, and
membrane phospholipids. The preference for nucleotidyl transfers to build
energetically unfavorable condensed biopolymers may arise from enzymatic
hydrolysis of the phosphoric anhydride bond of inorganic pyrophosphate
coproduct in every chain elongation step.

Some 30% of cellular ATP may be spent in pumping ions, in and out of
cells or into and out of subcellular organelles (protons into vacuoles, calcium
ions into the endoplasmic reticulum). ATP and guanosine triphosphate
(GTP) are spent for assembly and disassembly of microtubules, for powering
motors that transport protein cargoes from one part of the cell to another,
for unwinding DNA and RNA by helicases, for ATP-dependent cleavage of
short-lived proteins by proteasomes, and for a plethora of other cellular
reactions. Cyclic nucleotides, from the classical 3’,5' cyclic adenosine
monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), to
dicyclic-GMP and dicyclic-AMP, to the mammalian hybrid cyclic nucleotide
cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) that
signals foreign double-stranded DNA in host cell cytoplasm, form the basis
of low molecular weight signaling molecules.

Over the past three decades phosphoproteomics, posttranslational modifi-
cation of protein side chain residues, has taken center stage in phosphoryl
group biology. Some 270000 serine-, threonine-, and tyrosine-protein side
chains are predicted as protein kinase target phosphorylation sites in the
global human proteome. However, these three residues are joined by six
others (aspartate, glutamate, cysteine, histidine, arginine and lysine) that are
undercounted or missed entirely in the standard mass spectrometry work-
flows to identify acid-stable phosphopeptides. This is not a monograph cen-
tered on the canonical phosphoproteome and its myriad biological effects, but
it does examine the noncanonical phosphoproteome of the remaining six
protein residues. The chemistry of those six phosphorylated residues illus-
trates catalytic vs. regulatory roles, thermodynamic and kinetic stability, and
the chemical logic for protein phosphatases to reverse phosphorylation states
for only some of the nine amino acid side chains in full phosphoproteomes.

In a real sense the approach of this monograph follows the utterance of
Alexander Todd, 1957 Nobel laureate in chemistry: “where there is life, there is
phosphorus”. From a few central precepts of reactivity of inorganic phos-
phate, phosphoric anhydride linkages, phospho-monoesters and diesters,
the effects of natural substitution of one of the four oxygens of phosphate by
carbon (phosphonates), nitrogen (phosphoramidates), or sulfur (phosphor-
othioates), the scope and logic of phosphorus chemical biology is developed
to examine why life depends on phosphorus.

Christopher T. Walsh
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SECTION I

Introduction to Phosphorus
and Inorganic Phosphates

Section I contains two introductory chapters. The first summarizes some of
the properties of elemental phosphorus relevant to its chemical biology. It
also frames the themes and attributes of phosphorus in the inorganic
phosphate oxidation state that permeates every aspect of cell metabolism.
Phosphorus joins carbon, hydrogen, oxygen, nitrogen, and sulfur as one of
the six most abundant elements requited for life.

Chapter 2 introduces both inorganic phosphate, inorganic pyrophosphate
and inorganic polyphosphates and their roles in form and function of or-
ganisms. Some 85% of inorganic phosphates are deposited in bones and
teeth enamel while the other 15% have myriad roles in metabolic biology.
Pyrophosphate and the higher order linear polyphosphates introduce the
thermodynamically activated but kinetically stable P-O-P anhydride bond as
the key functional group in phosphate chemical biology.

There are four properties of phosphorus which form the backbone themes
of its chemical biology. First, is the observation that phosphorus is largely
redox inert in biological systems. Essentially all of its chemistry relevant to
biological function is in the [+5] oxidation state. Second, over the eons of
global oxygenation of the earth planetary phosphorus in surface rocks has
accumulated as the most oxizided P form, inorganic phosphoric acid. The
first two pK, values of inorganic phosphoric acid are at pH2 and pH7, so
phosphates can exist as divalent anions complexed with neutralizing
cations.

Third, inorganic phosphate can react in two modes in biology. It can be-
have as an electrophile at phosphorus, or it can behave as an oxygen nu-
cleophile, e.g. as the phosphate dianion. This orthogonal reactivity allows
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2 Section I

great versatility in the roles of phosphate and to phosphoric anhydrides in
biology. The fourth key property is evinced in the phosphoric anhydride
linkages of inorganic pyrophosphate and inorganic triphosphate, and is
carried over to the triphosphate side chains of ATP and congeneric nucleo-
side triphosphates. The P-O-P-O-P side chain in ATP is tetra-anionic
at neutral pH and thereby kinetically stable. The two phosphoric an-
hydride [P-O-P] bonds are thermodynamically activated for transfer of each
P as an electrophile. This duality of thermodynamic activation with kinetic
stability enables life.



CHAPTER 1

Introduction to Phosphorus
Chemical Biology

Alexander Lord Todd, 1982

“Iwould guess that if life exists anywhere else in the universe it will do so only
on a planet on which phosphorus is readily available.”®

1.1 The Element: Discovery, Abundance, Valence
States

Adult humans contain about 2 pounds (0.8 kg) of phosphorus, almost ex-
clusively in the form of the fully oxidized phosphate atoms. Some 85% is de-
posited in bones and teeth as calcium phosphate in the form of crystalline
hydroxyapatite. The remainder is in soft tissues, with the serum concentration
of soluble inorganic phosphate (HPO,”>~) maintained within narrow limits at 1.1
to 1.4 mM. At these levels, phosphorus is slightly less abundant than calcium,
and about half the levels of bodily nitrogen (1.8 kg). The other three abundant
elements H, C, and O come in at 7 kg, 16 kg, and ~43 kg, respectively. The ~1%
abundance of phosphorus by mass belies the essential roles of phosphates. Lord
Alexander Todd, British chemist and Nobelist who carried out the first syn-
theses of nucleotides, remarked “Where there is life, there is phosphorus”.

Phosphorus sits just below nitrogen in the periodic table, as atomic number
15, with a molecular weight of 30.974 atomic mass units. While *'P is the most
abundant and stable isotope, the short lived radioactive **P has found extensive
use in radiotracer studies (half-life ~14 days) and the stable heavy atom isotope
*3p also has its uses as a tracer for phosphorus metabolism.

The 15 electrons of phosphorus fill orbitals in the order 1s*2s*2p°®3s°3p°.
Asimplistic description of the available valence electrons for bonding (Figure 1.1)
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Figure 1.1 (A) Orbital filling diagram for phosphorus: configurations for trivalent

phosphorus (P™) or pentavalent phosphorus (PY). (B) Three allotropic
solid forms of elemental phosphorus (Left to Right: White, Red and
Black phosphorus). B - Left image courtesy of BXXXD, https:/en.
wikipedia.org/wiki/File:Wei%C3%9Fer_Phosphor.JPG, under the terms
of a CC BY-SA 3.0 license, https://creativecommons.org/licenses/by-sa/3.
0/deed.en. B - Right image courtesy of https://en.wikipedia.org/wiki/
File:Black_Phosphorus_Ampoule.jpg, under a CC By-SA 3.0 license,
https://creativecommons.org/licenses/by-sa/3.0/deed.en.

indicates that trivalent compounds engage the 3p electrons while pentavalent
phosphorus involves hybridized sp’d orbitals. Phosphorus trichloride and pen-
tachloride are classic abiotic compounds of phosphorus in the P=[+3] and
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P=[+5] oxidation states, respectively. At the other end of the oxidation spec-
trum, phosphine, PHj, is a fully reduced trivalent phosphorus compound, but
now with P=[—3] oxidation state.

Phosphorus was first isolated as a pure element by Hennig Brand in
Germany in 1669 in pursuit of alchemical studies.” Concentration of human
urine followed by heating to high temperature led to distillation of white
phosphorus. This was a luminescent and phosphorescent species. The name
phosphorus is from the ancient Greek combination of phos (light) and
phoros (bearer) There are some 10 known allotropes of elemental phos-
phorus, from the P, tetrahedron of white phosphorus to polymeric chains of
red, black, and other phosphorus allotropes. The red phosphorus allotrope
is not phosphorescent.” Three of those allotropes are depicted in Figure 1.1B

Phosphorus is thought to be formed only in the hot interiors of large stars such
as red giants, by gain of a proton from *'silicon. The relative under-abundance of
phosphorus in the universe (and on earth) has raised questions about whether it
was sufficiently available to be present in the earliest life forms, but only arsenic
has been proposed as an incomplete alternative to fulfill its myriad roles and it
fails the test of stability of arsenate diesters in aqueous solutions.

Unlike nitrogen, which can cycle between [—3] and [+5] oxidation states,
and neighboring sulfur, with [—2] to [+6] oxidation states, phosphorus in
biology is almost exclusively in the [+5] oxidation state as inorganic phos-
phate with four oxygens surrounding the central phosphorus atom. One of
the P-O bonds is formally a P=O double bond. The other three are P-OH
bonds in phosphoric acid (H;PO,) (Figure 1.2). The first pK, is at pH 2.12
(50% ionized to the indicated resonance stabilized monoanion at that pH).
The second pKj, is 7.12, so at neutral pH values in organisms there is a mix of
monoanionic and dianionic inorganic phosphate species. The third pK, of
phosphoric acid, at pH~ 12, is outside the range of physiological pH values
so there is no significant biological role for inorganic phosphate trianions.
(In most microenvirons the undissociated phosphoric acid is also not rele-
vant, although at stomach pH values of ~2, the undissociated phosphoric
acid species will be relevant.) We will see that the monoanionic and di-
anionic species of inorganic phosphate are essential features of the chemical
biology of phosphorus. Most of the global cycle of phosphorus occurs in the
movement of phosphate species.

Inorganic phosphoric acid and its physiologically relevant monoanions
and dianions exhibit tetrahedral geometries (Figure 1.2B), with one formal
P=0 double bond and three P-O single bonds. The three single P-O bonds
are chemically equivalent. Keeping in mind the tetrahedral geometry, we will
typically not specify it explicitly in most of the ChemDraw structural for-
mulas throughout the text except when stereochemical issues arise, as in
phosphorothioates in Chapter 12. Stereochemistry is otherwise cryptic in
transformations of phosphate with its three equivalent oxygens.

By far the most abundant form of phosphorus available in the earth’s
crust is inorganic phosphate-containing rock, the most oxidized form of
pentavalent phosphorus, formed over eons from weathering in the oxygen-
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Figure 1.2 (A) pK, values for the first and second pK,s (pH value at 50% ionization)
for phosphoric acid. Note that monoanions and dianions are stabilized

by resonance delocalization of the charges. (B). Phosphates have tetra-
hedral geometry.

containing planetary atmosphere. About 50-200 million tons of phosphate-
rich rock are harvested each year and converted abiotically to pure phosphoric
acid. The inorganic acid and its salts are used for fertilizers, animal feed,
flame retardants, weed Kkillers, detergents, and other industrial uses.

The daily dietary input of phosphate for a human adult can range from
~700 mg (estimated daily amount needed) to ~1500 mg per day. Excess
phosphate is eliminated by kidney excretion.” Failure of the kidneys to keep
up with phosphate loads leads to pathological hyperphosphatemia con-
ditions (and eventual deposition as insoluble calcium phosphates).

1.2 Chemical Biology of Phosphorus

Inorganic phosphate, typically as fluorapatite [Cas(PO,);F] or hydroxyapatite
[Cas(PO,4);OH], in limestone and mudstone rocks can vary from 4 to 30% in
those rocks.” That abundance, coupled with the observation that over 99% of
phosphorus biology occurs in the P=[+5] oxidation state, makes inorganic
phosphate and its compounds the center of phosphorus chemical biology.
Throughout this volume, we take the simplifying view that the chemistry of
inorganic phosphate, its anhydrides, monoesters and diesters with alcohol
groups of metabolites, both of low molecular weight and as macromolecules,
dominate and determine the myriad roles of phosphate in biology (Figure 1.3).
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Figure 1.3 The dianionic form of inorganic phosphate and phosphate monoesters, the
monoanionic form of phosphodiesters, and the tetra-anionic form of in-
organic pyrophosphate are dominant forms in phosphorus chemical biology.
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1.2.1 Where There is Life There is Phosphorus

The opening three-line quote at the start of this chapter is from Alexander
Todd a British organic chemist, professor at Oxford in the mid twentieth
century who pioneered synthetic methods for making phosphate-containing
molecules central to biology. The citation is to a paper (‘Where there’s life
there’s phosphorus’) delivered by Todd in 1981 at a conference in Japan." In
a review article in 2010 Bowler et al.® analyze Todd’s arguments and provide
additional perspective 30 years on. Among the properties embedded in
phosphate chemistry essential to biology are the following:

1. DNA information retention from organism generation to generation
requires ultrastable phosphodiester internucleotide bonds, that are
nonetheless rapidly repairable when necessary.

2. If life started via an RNA world then phosphodiesters were key covalent
linkages stitching together bits of chemical information.

3. Lipid membrane barriers define an inside and outside for cells and
organisms and allow establishment of transmembrane electrochemical
potentials. Phospholipid diester head groups, attached covalently to lipid
tails, are the universal building blocks for biological membranes.

4. To build skeletons strong enough to support large organisms, most
notably mammals, calcium phosphate salts comprise the building block
for bones and teeth

5. Organisms constantly need energy supplies to survive. The energetics
of life are built around phosphoric anhydride chemistry

6. Regulation of information flow and signaling over different time re-
gimes is dominated by two parallel signaling regimes involving phosphate
chemistry: (a) a set of low molecular weight second messengers: cyclic
adenosine monophosphate (cCAMP), cyclic guanosine monophosphate
(cGMP), di-cyclic GMP, di-cyclic GMP-cAMP; (b) protein posttransla-
tional phosphorylations.

We take up each of these facets of phosphate group chemistry in bio-
logical contexts through the subsequent chapters of this book. Life is
certainly more than phosphoryl group chemistry but no other element in
the periodic table exhibits chemical properties that would allow life to be
constructed by a phosphorus replacement. (Pentavalent arsenic has some
replacement properties, but its esters are chemically labile in aqueous
physiological media).

1.2.2 Inorganic Phosphate, Phosphoric Anhydrides to
Nucleoside Triphosphates (NTPs)
The chemical biology of inorganic phosphate is pervasive throughout all

forms of life. A classic review article by Westheimer in 1987 extolled the
properties of phosphates with the title ‘Why Nature Chose Phosphates’ and is
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still compellingly relevant more than 30 years later.” Furthermore, that re-
view occurred just as the enormous reach of phosphoprotein biology was
becoming apparent, reinforcing the extensive reliance on phosphate chem-
istry in both low molecular weight and high molecular weight metabolites.
We will devote some time to the fact that the only covalent linkages in both
DNA and RNA biopolymers are the internucleotide phosphodiester bonds,
each bearing a net negative charge.

Inorganic phosphate plays three major roles in biology as we will elaborate
in subsequent chapters. The first is that it is poorly soluble as the calcium
salt and precipitates out of supersaturated solutions as hydroxyapatite dur-
ing bone and teeth enamel formation.® Higher pH redissolves phosphate
dianions and is the basis for the dynamics of bone resorption.

The second aspect of phosphate chemistry is that the central P atom in
the [+5] oxidation state is electron deficient. It reacts as an electrophile
with nucleophilic atoms that can penetrate the phalanx of the four
surrounding oxygens of the phosphate group, especially when complexed
with cations. The capture of inorganic phosphate at its central electro-
philic phosphorus atom by an oxyanion of adenosine diphosphate
(ADP) is the fundamental chemical reaction enacted by proton-
conducting, membranous adenosine triphosphate (ATP) synthases.
Humans make and then turn over their body weight in ATP (~70-80 kg)
every day.’ The electrophilicity of the P atom in inorganic phosphate is
central to life.

The third attribute, alluded to in the previous paragraph is that inorganic
phosphate at physiological, neutral pH values is a mix of monoanion and
dianion. Those oxyanions are biological nucleophiles (as also noted for ADP
just above). Perhaps the most visible biological manifestation of that
phosphate oxyanion nucleophilicity is in the catalytic cycle of phosphorylase
enzymes. Such phosphorylases transfer electrophilic fragments of substrates
to inorganic phosphate (Chapter 9). The mobilization of glucosyl units from
starch or glycogen storage polysaccharides by phosphorylases releases glu-
cose-o-1-phosphate units.

1.3 Inorganic Pyrophosphate

In many ways the simple dehydrative condensation of two molecules of in-
organic phosphate to the phosphoric anhydride bond in pyrophosphoric
acid (PPi) illuminates the features of the most important phosphate func-
tional group in all of biology (Figures 1.2 and 1.3). Because of the pK, values
of phosphoric acid, inorganic pyrophosphate at neutral pH exists in large
part as the tetra-anion. That phalanx of negative charges helps shield the
central phosphoric anhydride linkage from adventitious attack by water.
Thus, although the equilibrium constant greatly favors pyrophosphate tetra
anion hydrolysis to two molecules of inorganic phosphate, kinetically the
phosphoric anhydride linkage is stable enough for pyrophosphate tetra-
anion to be a diffusible metabolite in all cells.
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The dichotomy of thermodynamic activation for phosphoryl group trans-
fer to potential nucleophiles (including water) coupled to kinetic stability is
the central feature of phosphoric anhydride biology, from inorganic pyropho-
sphate to ATP (Figure 1.3), and includes other nucleoside triphosphates
(NTPs) as well as the 2’-deoxynucleoside triphosphates (dANTPs) building
blocks for DNA. By comparison acetic anhydride, a simple carbon-based
anhydride, is similarly activated thermodynamically, in this case as an acetyl
transfer reagent, but it is not kinetically stable in neutral physiological
aqueous media. It would not have existed intact long enough to serve as a
carrier of activated acetyl groups for metabolic transfers (That turns out to be
the role of the thermodynamically activated but kinetically stable acetyl
thioester link in acetyl-S-coenzyme A'®) The pK,s of the polyprotic phos-
phoric acid are essential to life.

While free pyrophosphate is rarely used by contemporary multicellular
organisms as a phosphoryl donor, it is cleaved in almost every cell by the
action of the ubiquitous hydrolase inorganic pyrophosphatase. The net
concentration of [PPi] in cells is often below 10~° M for this reason, ensuring
that the thermodynamically activated P-O-P bond has been cleaved to draw
off the equilibrium of any PPi-forming enzyme reactions in the forward
direction (see Chapter 4).

1.4 Phosphoric Anhydride Side Chains in ATP, NTPs,
and 2'deoxyNTPs

The apotheosis of phosphoric anhydride chemistry in biological systems is
found in adenosine 5’-triphosphate (ATP) (Figure 1.4), related NTPs that are
the building blocks for RNA biogenesis, and the corresponding 2’-deoxyr-
ibonucleoside triphosphate precursors to DNA. ATP and congeners have two
P-O-P anhydride bonds in their triphosphate side chains, offering three
electrophilic P atoms (Pa, PB, and Py) for thermodynamically favored attack
by cellular nucleophiles. Yet, ATP is kinetically stable to 100 °C, so even
thermophilic microbes use it as major cellular energy currency."’

The equilibrium constant (K) values for cleaving either of the two P-O-P
anhydride bonds in ATP and congeners is about 10°. Thus, if a kinetic
condition for rapid cleavage of one of the two phosphoric anhydride bonds
in ATP or NTPs can be found, then ATP or NTP side chain cleavage can be
used to drive otherwise unfavorable equilibria. This is the job of hundreds of
enzymes in cells. Those catalysts lower the energy barriers for cosubstrate
nucleophiles to attack any one of the three electrophilic phosphorus atoms
in the ATP, NTP, or dNTP side chain. They thereby couple a highly favorable
phosphoric anhydride bond fragmentation to a huge variety of other
chemical transformations in metabolism.

We will take up the distinct regiochemistries of enzyme-directed ATP, NTP,
and dNTP phosphate side chain cleavages to categorize large swaths of
metabolism by simple chemical classification. Attack of an electron-rich
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Figure 1.4 Three modes of attack of cosubstrate nucleophilic atoms on one of
the electrophilic phosphorus atoms in the side chain of Mg-ATP.
(A) phosphoryl transfer, (B) pyrophosphoryl transfer, and (C) nucleotidyl
transfer involve attack at Py, Pf, and Po, respectively.

nucleophile at the outside Py of ATP, NTP, or dNTP constitutes a phosphoryl
transfer (Figure 1.4). Attack on the central PB-atom constitutes a pyrophosphoryl
group transfer to the incoming nucleophile (Figure 1.4). Finally, attack on Pa. is
generically a nucleotidyl transfer (for ATP it is an adenylyl transfer). We will note
that nucleotidyl transfers generate PPi as coproducts that get further cleaved by
inorganic pyrophosphatase action to pull further on forward equilibria.
These nucleotidyl transfers are the backbone strategies for monomer unit
activation and/or incorporation into the growing chains of proteins, RNA,
and DNA. Internal nucleotidyl transfers are the chemical mechanisms that
enable the biology of cyclic nucleotides and cyclic di-nucleotides as intra-
cellular messenger metabolites. Repair of DNA single strand and even
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double strand breaks is an ongoing activity in every cell in humans and other
organisms. Tandem nucleotidyl transfers are at the center of the DNA ligases
that repair such strand breaks to protect the integrity of genomes.

The enzymes catalyzing ATP, NTP, or dNTP cleavages without coupling of
the -PO,”" group in flight to a substrate other than water are termed ATPases
or more generally NTPases [e.g. guanosine triphosphatases (GTPases)].
At first glance they look to be a hydrolytic waste of an activated P-O-P an-
hydride bond. However, these ATPases are all coupled to some conforma-
tional changes in their protein substrates to drive component motions,
marking of proteins, e.g. for accelerated degradation, or to drive mechanical
forces in cells. ATP and its paired side chain phosphoric anhydrides are so
central to cellular energy metabolism that humans take their daily inventory
of ~75 g of ATP, make 1000 times that amount (~75 kg!) and spend it all,
every day. In many ways this is the core of phosphorus chemical biology.

1.5 Families of Thermodynamically Activated
Phosphoryl Derivatives

While phosphoric anhydride linkages in nucleoside triphosphates are the
central phosphoryl group transfer currency in cells, other phosphoryl functional
groups are also thermodynamically activated and sufficiently kinetically stable
to serve as phosphoryl group donors.'® Three of them are doubly activated for
both phosphoryl group transfer and transfer of the other moiety as an activated
electrophile. The classes of metabolites are mixed sulfuric-phosphoric an-
hydrides, represented by 3’-phospho-5-adenosine phosphosulfate (PAPS), acyl
phosphates such as the simple acetyl phosphate, and phosphorylated enols of
which phosphoenolpyruvate is the paradigm (Figure 1.5).

All three can be attacked by one of the terminal oxyanions of ADP in the
presence of particular enzyme catalysts to make ATP, thus evincing phosphoryl
group potential. More usefully, PAPS is the cellular donor of the activated sul-
furyl group to oxygen and nitrogen cosubstrate nucleophiles. Acyl phosphates
are donors of activated acyl groups in a variety of cellular acyl transferase active
sites. While phosphoenolpyruvate (PEP) is thought of mainly as a phosphoryl
group donor, the enolpyruvyl group is transferred intact in bacterial assembly of
aromatic scaffolds and in cell wall peptidoglycan construction.

1.5.1 Routes to ATP Biosynthesis

Given the thousand-fold turnover of the existing bodily inventory of 75 g of ATP
every day by humans, we will note there are only three common routes to make
that thousand-fold increase in daily ATP pools. The membrane-embedded ATP
synthase in mitochondria, acting as a conduit for protons running down their
electrochemical potential, makes about 94-95% of the 75 kg of daily ATP under
fully oxygenated conditions. This requires the access of pools of ADP and in-
organic phosphate in the mitochondria into the ATP synthase active site for net
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Figure 1.5 Additional phosphoryl-containing functional groups that are utilized in
biological group transfer enzymatic reactions: sulfuric-phosphoric an-
hydrides, acyl-phosphoric anhydrides, and enolphosphates.

dehydrative coupling to make the PB-O-Py anhydride bond in ATP. About 6%
of ATP (~4.5 kg per day) is generated by glycolysis, the ten-enzyme pathway
converting intracellular glucose to two molecules of the three-carbon keto acid
pyruvate. The two molecules in this pathway that lead to ATP formation are an
acyl phosphate (1,3-diphosphoglycerate) and PEP, two of the activated me-
tabolites noted in the preceding paragraph. These three molecules, ATP, PEP,
and acyl phosphate, give insights into the relative phosphoryl group transfer
potentials of these three classes of thermodynamically activated phosphoryl
group scaffolds (Figure 1.5).

1.6 Phosphomonoesters: Alcohols as Nucleophiles in
Phosphoryl Transfers

After consideration of the metabolic changes enabled by the thermo-
dynamically activated phosphorylated frameworks, just noted, we turn to
phosphate esters. Most discussions of biological phosphates would start
with phosphomonoesters—e.g. glucose-6-phosphate—and then phospho-
diesters—e.g. the 3’5’-internucleotide phosphodiester bonds in RNA and
DNA—including their routes of formation and breakdown.

Indeed, the capture of phosphoryl groups by alcohol functionalities in co-
substrates dominates sugar metabolism. We believe strongly that a prior dis-
cussion of phosphoric anhydride chemical biology then gives the insights
necessary to understand how ATP is a phosphorylating reagent for alcohol groups
in the above metabolites. This is the essence of the strategy of over 100 low
molecular weight kinase enzymes and more than 500 protein kinases in humans.
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Phosphomonoester metabolites turn over in a dynamic fashion. The
catalyzed hydrolysis of phosphomonoesters back to alcohol and inorganic
phosphate are the province of phosphatase enzymes. These include low
molecular weight selective phosphatases as well as many kinds of phos-
phoprotein phosphatases.

1.7 Phosphodiesters: Alcohols as Nucleophiles in
Nucleotidyl Transfers

Phosphodiesters contain two alcohol groups with a bridging phosphoryl
group. Two of the four oxygens in the sandwiched phosphoryl group
are esterified to those alcohols: hence the terminology of phosphodie-
sters. Two key biologic classes of phosphodiesters are RNA and DNA
molecules. The only covalent bonds holding the RNA nucleoside mono-
phosphate units (NMPs) together and correspondingly the 2’deoxyNMP
units in DNA chains are the internucleotide phosphodiester bonds
(Figure 1.6A). These phosphodiesters span the 3’-alcohol of a ribose unit
in one NMP or dNMP to the 5-OH of the ribose in the next NMP or
dNMP group. All of the three billion dXMP base pairs in the human
DNA genomes and the billions of XMP base pairs in all the classes of
cellular RNAs are formed enzymatically by nucleotidyl transfer enzymes.
Those nucleotidyl transferases, known as RNA polymerases or DNA
polymerases, respectively, offer up NTPs or dNTPs for attack at Palpha by
the 3’-OH of the terminal XMP or dXMP residue in the growing RNA or
DNA chain.

Analogously, the activation of each of the 20 proteinogenic amino acids to
serve as building blocks in the ribosome-based protein biosynthetic nano-
machinery starts with nucleotidyl transfers. All the amino acids are activated
as mixed-acyl-AMP anhydrides as the first step in aminoacyl tRNA synthetase
active sites (Figure 1.6B). The second step is transfer of the now activated
aminoacyl groups to cognate tRNAs to be ferried to the ribosomes by
chaperone proteins.

Thus, each step in in macromolecular information transfer biology-genome
replication, transcription, and translation—involves nucleotidyl transfer
strategies. RNA and DNA biogenesis make stable phosphodiester linkages,
while protein biosynthesis makes kinetically labile aminoacyl-adenylates that
get converted to kinetically stable aminoacyl tRNA oxoester links.

Other aspects of nucleotidyl transfers to be explored include the gener-
ation of membrane phospholipids (Figure 1.7A). Most of the ~10° lipid
molecules in the plasma membranes of animal cells are such phos-
pholipids, where the phosphorus is present as a phosphodiester. Given
~10" cells in a human adult times 10° phospholipids per cell crudely
computes to ~10>> phosphodiester linkages in membrane phospholipids
in each person. This is a serious biosynthetic task and phospholipid re-
modeling goes on in all cells.
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Figure 1.6 (A) 3',5’-phosphodiesters are the only covalent linkages in both RNA and
DNA chains; (B) Aminoacyl-AMPs are thermodynamically activated,
kinetically stable forms of the 20 proteinogenic amino acids that serve
as monomers for protein biosynthesis.

A second aspect of low molecular weight nucleotidyl transfers that we will
dwell on are intramolecular nucleotidyl transfers. The enzyme-mediated
formation of classic second messengers such as 3’,5'cyclic AMP and 3’,5'-
cyclic GMP occur by action of such intramolecular nucleotidyl transferases
(Figure 1.7 B). The more recently described di-cyclic nucleotides, including
di-cyclic GMP (di-CGMP) and the mammalian cyclic guanosine-adenosine
phosphodiesters (cGAMPs) are intramolecular and/or intermolecular
variants of that catalytic logic.

As with phosphomonoester metabolites, phosphodiester bonds are
cleavable enzymatically. Such phosphodiester hydrolases (phosphodies-
terases) typically act in a controlled fashion. For the RNA and DNA polymers
as substrates there are a plethora of phosphodiester hydrolases, generally
termed nucleases. Some show strict endonuclease or exonuclease specificity.
Sequence specific restriction endonucleases from bacteria number in the
thousands, selective for recognition of particular oligonucleotide sequences
before engaging in hydrolytic internucleotide phosphodiester cuts, in blunt
end or staggered cuts on both strands of DNA.

Some exonucleases act in the 5’ to 3’ direction, others in the 3’ to
5'direction. Some are specific for double stranded regions of RNA or DNA
substrates, some selective for single strand hydrolytic reactions. Some are
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Figure 1.7 (A) Membrane phospholipids also contain phosphodiesters linkages,
connecting the polar head groups to the hydrophobic diacylglycerol
backbone. Shown are forms of phosphatidyl ethanolamine and
phosphatidyl choline that are often bulk membrane phospholipids.
Also shown is the minor phospholipid phosphatidylinositol-4.5-bisphos-
phate, a membrane lipid signaling metabolite. (B) Cyclic nucleotides that
function as biological second messengers (hormones are the first
messengers) have cyclic phosphodiester linkages. Shown are 3’,5’-cyclic
GMP and 3',3'-dicyclic GMP.

involved in repair or in formation of specific single strand or double strand
nicks. Some are protective against foreign DNA; some appear to be purely
degradative in function.

There are about a dozen cyclic nucleotide phosphodiesterases in human
cells, to effect different physiologic and signaling responses to cAMP and
c¢GMP of varying duration in different tissues. Thus, the universe of
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phosphodiesterase enzymes has evolved to perform a wide variety of specific
biological functions in both prokaryotic and eukaryotic organisms.
Turning away from nucleic acid substrates towards membrane phospho-
lipids, phospholipase C and phospholipase D family members carry out
hydrolytic cleavages on distinct sides of the sandwiching phosphodiester bond.

1.7.1 Three Nucleotidyl Transfers in a Catalytic Cycle of DNA
Ligase

DNA ligases, crucial enzymes in DNA repair of both single strand gaps and
double strand gaps with 3’-OH and 5’-phophomonoester ends, engage in
tandem nucleotidyl transfer strategies. Starting with ATP, the first nucleo-
tidyl transfer is to the e-NH, of an active site lysyl side chain of the enzyme.
The second nucleotidyl transfer of that AMP moiety is to the 5’-P on one side
of a gapped DNA strand, creating an ADP adduct. The third nucleotidyl
transfer is to water as the internucleotide phosphodiester bond is formed in
the actual DNA repair step."’

The chemical biology strategy is beautifully exemplified in the catalytic
logic of DNA ligases. The initial conversion of (1) the Pa—O-P phosphoric
anhydride bond in ATP precedes (2) the phosphoramidate N-P bond in the
AMP-Lys-enzyme adduct, on the way to (3) the phosphoric anhydride bond
in the ADP adduct on the 5'-side of the DNA gap. Finally, step (4) of the
tandem nucleotidyl transfers is elimination of AMP in the internucleotide
ligation step (Figure 1.8). In aggregate, these four steps show the chemical
versatility of nucleotidyl transfers in DNA repair.

The great bulk of the myriad roles of phosphorus in biology occur in the
form of phosphate, with four oxygens around the central P = [+5] oxidation
state. The oxygens can be unsubstituted in inorganic phosphate, or in an-
hydride linkages. Those anhydrides can consist of P-O-P bonds in phos-
phoric anhydrides, mixed acyl phosphoric or mixed sulfuric-phosphoric
anhydrides. Alternatively, the phosphate oxygens can be substituted by one
or more alcohol groups. Esterification of phosphoric acid to one alcohol
gives [R-OPO;>"] as phosphomonoesters. Esterification to two alcohols
[RO-PO,-OR’] gives the classes of phosphodiesters. (Figure 1.2). The
mechanisms for enzyme-mediated phosphoryl group transfers in these dif-
ferent classes of phosphate metabolites have been scrutinized to decipher
the underlying chemical logic and general strategy.

1.8 Phosphonates, Phosphoramidates, and
Phosphorothioates

There are three additional classes of naturally occurring phosphate deriva-
tives that reflect substitution of one of the four phosphate group oxygens by
a carbon, a nitrogen, or a sulfur atom. (Figure 1.9), yielding phosphonate,
phosphoramidate, or phosphorothioate scaffolds, respectively.'?
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